

Using OAuth 2.0 to Access VSA APIs
A Programming Primer

Introduction
VSA APIs use the OAuth 2.0 protocol for authentication and authorization. Kaseya supports
common OAuth 2.0 scenarios to permit access for web server, installed and client-side
applications.

To start, you will need to obtain OAuth 2.0 client credentials from the Kaseya Virtual System
Administrator (VSA) “Server Management” Console. Then your client application needs to link
itself with the VSA so trust can be established. Finally, as users need access to data and APIs
in the VSA for the first time, they will need to authorize access through a traditional “consent”
code flow.

This document outlines the registration and authorization scenarios Kaseya supports, and
provides guidance on how to build your first OAuth client that communicates with the VSA.

! Note: Given the security implications of getting the implementation correct, we strongly
encourage you to use commercial or well-supported open source OAuth 2.0 libraries when
interacting with Kaseya’s OAuth 2.0 endpoints. It is a best practice to use well-tested code
provided by others, and it will help you protect yourself and your users.

Basic steps
All applications follow a basic pattern when accessing a VSA API using OAuth 2.0. At a high
level, you follow five steps:

1. Obtain OAuth 2.0 credentials from the VSA Server by registering your application.
2. Authenticate to the VSA to obtain a temporary authorization code.
3. Exchange the authorization code for an access token.
4. Send the access token to the VSA API when needed.
5. Refresh your access token, if necessary.

© 2016 Kaseya. All Rights Reserved. Page 1 of 7

https://tools.ietf.org/html/rfc6749

1. Obtain OAuth 2.0 credentials from the VSA Server
Visit the VSA server to obtain OAuth 2.0 credentials such as a client ID and client secret that
are known to both the VSA and your application. This can be done from System > Server
Management > OAuth Clients . Once the client is registered, a client_id and
client_secret are generated by the system. The client_id is shown on the UI post
registration, and both the client_id and client_secret are sent to the email address
provided at the time. The client_secret is confidential and must be stored securely by the
application.

! Note: Support for OAuth 2.0 clients is available in Kaseya VSA v9.4 and above.

The following screenshot shows the user interface for all registered client applications. Here you
can register clients, re-send client credentials and revoke refresh tokens for existing clients.

© 2016 Kaseya. All Rights Reserved. Page 2 of 7

The following screenshot shows the user interface to actually register a client application:

2. Authenticate to obtain a temporary authorization code
To allow a client access to a user’s protected resource, the client application must open an
HTTP/S session pointing to the following location:

https:// {vsa_url}/vsapres/web20/core/login.aspx?response_type=co
de&redirect_uri= {redirect_uri}&client_id= {client_id}

● {vsa_url} - the url of the VSA that the client application registered on
● {redirect_uri} - the redirect_uri provided during registration, url encoded
● {client_id} - the client ID issued to the client application during registration

If the client_id and redirect_uri are invalid, the login page will fail and show an “Invalid Request”

© 2016 Kaseya. All Rights Reserved. Page 3 of 7

error. If the parameters are valid, the login page will prompt for credentials. After the user logs
on, they will be prompted for consent to authorize the client application to communicate with the
VSA, on behalf of them. It will look something like this:

If the user clicks Allow, they are essentially giving the client application access to their
protected resources. Clicking Allow will cause the HTTP/S session to redirect to the
redirect_uri for the client application, with the following uri:

{redirect_uri}?code={auth_code}

The auth_code passed to client application has a lifetime of 5 minutes and must be used to
make a token request within that timeframe.

! Note: This OAuth 2.0 code flow process requires a proper HTTP/S session. If you are
building a native application that wishes to use the VSA API you will need to support a
browser control or otherwise connect via HTTP/S to properly conduct this transaction.

3. Exchange the authorization code for an access token
Once you have received an auth_code you must exchange it within 5 minutes for an
access_token and refresh_token . To do this the client application will need to make a
request to the url:

POST https:// {vsa_url}/api/v1.0/authorize

...with the following x-www-form-urlencoded parameters in the request body.

© 2016 Kaseya. All Rights Reserved. Page 4 of 7

● grant_type - must be set to ‘authorization_code ’
● code - must be set to the auth_code obtained in the previous step
● redirect_uri - the url encoded redirect uri of the client application
● client_id - the client_id of the client application
● client_secret - the client_secret of the client application

! Note: Kaseya’s implementation of OAuth 2.0 on the VSA will NOT permit authorization to
API endpoints if SSL has not been configured for the server.

If the request is invalid, an appropriate response according to the RFC is returned. A valid
request will produce the following response:

The response contains an access_token , it’s lifetime in seconds defined by the expires_in
parameter, the token type of ‘Bearer’ in the token_type parameter, and a refresh_token .
The refresh_token is confidential and should be stored securely by the client application.

! Note: It is the responsibility of the client application to track the expiration time of the
access token and utilize the refresh token to request a new access token as required. It is a
best practice to conduct the token exchange before it actually expires, except on initial
connection on application restart, where a new access token should be fetched immediately
anyways.

4. Send the access token to the VSA API when needed
After a client application obtains an access token, it sends the token to the VSA REST API in an
HTTP authorization header as the ‘Bearer’ token. It is possible to send tokens as URI
query-string parameters, but we don't recommend it, because URI parameters can end up in log
files that are not completely secure. Also, it is good REST practice to avoid creating
unnecessary URI parameter names.

Access tokens are valid only for the set of operations and resources described in the scope of
the token request. At the time of this writing, all VSA APIs honor the roles and scopes within the
VSA to limit access to data automatically, and not that of the scopes within an access token.

© 2016 Kaseya. All Rights Reserved. Page 5 of 7

? Confused? A scope in OAuth 2.0 is NOT the same thing as a scope within the VSA. Where
a “scoped” access token limits what APIs can be called through permissions stored in the
JSON Web Token (JWT), a VSA scope limits how the APIs filter access to the data on the
backend. The result? While the VSA authorization service can use permissions in the JWT,
today we use the security model inside of VSA instead which our customers better
understand and have already configured for limited user access.

5. Refresh your access token, if necessary
Access tokens have a limited lifetime, typically 30 minutes. If your application needs access to a
VSA API beyond the lifetime of a single access token, it can obtain a refresh token. A refresh
token allows your application to obtain new access tokens as required.

To do this, post an HTTP/S request to the following endpoint:

POST https://{vsa_uri}/api/v1.0/token

...with the following x-www-form-urlencoded parameters in the request body.

● grant_type - must be set to ‘refresh_token ’
● refresh_token - the refresh_token stored by the client
● redirect_uri - the url encoded redirect uri of the client application
● client_id - the client_id of the client application
● client_secret - the client_secret of the client application

If the request is invalid, an appropriate response according to the RFC is returned. A valid
request will produce something like the following response:

Again, the response contains an access_token , it’s lifetime in seconds defined by the
expires_in parameter, the token type of ‘Bearer’ in the token_type parameter, and a
refresh_token . Note that the refresh_token has been re-generated and replaces any
previously issued refresh_token to the client. The client must now replace the previously

© 2016 Kaseya. All Rights Reserved. Page 6 of 7

stored token with this one.

! Note: Save refresh tokens in secure long-term storage and continue to use them as long as
they remain valid. By default, a refresh token is good for 60 days. If a refresh token expires,
the client application needs to follow the OAuth 2.0 code flow authorization process to
re-establish trust between systems.

Authorization Sequence Diagram

© 2016 Kaseya. All Rights Reserved. Page 7 of 7

