

 December 12, 2016

AAggeenntt PPrroocceedduurreess

User Guide

Version R94

English

Copyright Agreement

The purchase and use of all Software and Services is subject to the Agreement as defined in Kaseya’s
“Click-Accept” EULATOS as updated from time to time by Kaseya at
http://www.kaseya.com/legal.aspx. If Customer does not agree with the Agreement, please do not
install, use or purchase any Software and Services from Kaseya as continued use of the Software or

Services indicates Customer’s acceptance of the Agreement.”

©2016 Kaseya. All rights reserved. | www.kaseya.com

http://www.kaseya.com/jp/legal.aspx
http://www.kaseya.com/

 i

Contents

Agent Procedures Overview .. 1

Schedule / Create ... 1

Action Buttons.. 2

Scheduling Agent Procedures ... 3

Creating / Editing Agent Procedures ... 4

IF-ELSE-STEP Commands ... 6

IF Commands .. 9

checkVar() .. 9

else ... 10

eval() .. 10

getOS() ... 10

getRAM() .. 10

hasRegistryKey() / has64BitRegistryKey() ... 11

getRegistryValue() / get64BitRegistryValue ... 11

isAppRunning() ... 12

isServiceRunning() .. 12

isUserActive() .. 12

isUserLoggedin() ... 12

isYesFromUser() .. 12

testFile() ... 13

testFileInDirectoryPath() ... 13

true ... 13

STEP Commands .. 14

alarmsSuspend() ... 14

alarmsUnsuspendAll()... 14

captureDesktopScreenshot() .. 14

changeDomainUserGroup() .. 14

changeLocalUserGroup() .. 14

closeApplication() ... 14

comment() .. 15

copyFile() ... 15

copyUseCredentials() .. 15

createDomainUser() .. 15

createEventLogEntry() .. 15

createLocalUser() .. 16

createWindowsFileShare() .. 16

deleteDirectory() .. 16

deleteFile() ... 16

deleteFileInDirectoryPath() ... 16

ii

deleteRegistryKey() / delete64BitRegistryKey() ... 17

deleteRegistryValue() / delete64BitRegistryValue ... 17

deleteUser() ... 17

disableUser() ... 17

disableWindowsService().. 17

enableUser() .. 18

executeFile() .. 18

executeFileInDirectoryPath() .. 18

executePowershell() .. 18

executeProcedure() ... 19

executeShellCommand() ... 19

executeShellCommandToVariable() ... 20

executeVBScript().. 20

getDirectoryPathFromRegistry()... 20

getFile() .. 20

getFileInDirectoryPath() .. 21

getURL() ... 21

getURLUsePatchFileSource() ... 21

getVariable() .. 22

getVariableRandomNumber() ... 22

getVariableUniversalCreate() .. 22

getVariableUniversalRead() .. 23

giveCurrentUserAdminRights() .. 23

impersonateUser() ... 23

installAptGetPackage() ... 23

installDebPackage() .. 24

installDMG() ... 24

installMSI() ... 24

installPKG().. 24

installRPM() ... 24

logoffCurrentUser() ... 25

pauseProcedure() .. 25

reboot() .. 25

rebootWithWarning() ... 25

removeWindowsFileShare() .. 25

renameLockedFile() ... 25

renameLockedFileInDirectoryPath() ... 26

scheduleProcedure() ... 26

sendAlert() ... 26

sendEmail() .. 28

sendMessage() .. 28

sendURL() .. 28

setRegistryValue() / set64BitRegistryValue() ... 28

sqlRead().. 29

sqlWrite() ... 29

 iii

startWindowsService() .. 30

stopWindowsService() .. 30

transferFile() .. 30

uninstallbyProductGUID() ... 31

unzipFile() .. 31

updateSystemInfo() ... 31

useCredential() .. 31

windowsServiceRecoverySettings() ... 32

writeDirectory() .. 32

writeFile() ... 32

writeFileFromAgent()... 33

writeFileInDirectoryPath() ... 33

writeProcedureLogEntry()... 33

writeTextToFile() .. 33

zipDirectory() ... 33

zipFiles() .. 33

64-Bit Commands ... 34

Using Variables .. 35

Variable Manager .. 37

Manage Files Stored on Server .. 38

Folder Rights .. 39

Distribution .. 40

Agent Procedure Status .. 41

Pending Approvals .. 42

Patch Deploy .. 43

Application Deploy .. 44

Creating Silent Installs ... 45

Get File ... 47

Distribute File ... 48

Application Logging .. 49

Index ... 51

 Agent Procedures Overview

 1

Agent Procedures Overview
Agent Procedures

The Agent Procedures module automates tasks performed on managed machines. Agent procedures
can be run immediately, by schedule, or in response to a VSA system event or API request. The Agents

Procedures module also enables you to:

 Approve newly created or edited agent procedures using Pending Approvals (page 42). As a

security precaution, all agent procedures must be signed and approved before they can be run.

 View the status of all procedures run on a managed machine using Agent Procedure Status

(page 41).

 Spread out the impact agent procedures have on network traffic and server loading using
Distribution (page 40).

 Transfer files to and from managed machines using Get File (page 47) and Distribute File (page

48).

 Schedule the installation of Microsoft and non-Microsoft applications and patches using Patch
Deploy (page 43) and Application Deploy (page 44).

Note: See Patch Management (http://help.kaseya.com/webhelp/EN/KPATCH/9040000/index.asp#2200.htm)

to install Microsoft patches on managed machines.

Functions Description

Schedule / Create (page
1)

Automates user-defined tasks on managed machines by creating
and scheduling agent procedures.

Distribution (page 40) Minimizes network traffic and server loading by executing agent
procedures evenly throughout the day.

Agent Procedure Status
(page 41)

Shows the status of agent procedures executed on managed
machines.

Pending Approval (page
42)

Approves newly created or edited agent procedures.

Patch Deploy (page 43) Use this wizard tool to create procedures to deploy Microsoft
patches to managed machines.

Application Deploy (page
44)

Use this wizard tool to create procedures to deploy non-Microsoft
install packages (setup.exe) to managed machines.

Get File (page 47) View and manage files uploaded to the Kaseya Server from
managed machines using the getFile() agent procedure
command.

Distribute File (page 48) Write files to all selected managed machines and maintain them.

Schedule / Create
Agent Procedures > Manage Procedures > Schedule / Create

The Schedule / Create page automates user-defined tasks on managed machines by creating and

scheduling agent procedures. See the following topics for details:

 Action Buttons (page 2)

 Scheduling Agent Procedures (page 3)

http://help.kaseya.com/webhelp/EN/KPATCH/9040000/index.asp#2200.htm

Schedule / Create

2

 Creating / Editing Agent Procedures (page 4)

 IF-ELSE-STEP Commands (page 6)

 64-Bit Commands (page 34)

 Using Variables (page 35)

 Variable Manager (page 37)

 Manage Files Stored on Server (page 38)

 Folder Rights (page 39)

Related Topics

 Alert triggered agent procedures - Almost all configurable alerts in the VSA include a Run Agent
Procedure option that you can use to run a selected agent procedure if the alert is triggered. For

example, the Alerts page contains a list of alerts that include this option.

 Agent Procedure Failure Alerts - The Alerts - Agent Procedure Failure page triggers an alert when an

agent procedure fails to execute on a managed machine. For example, if you specify a file name,
directory path or registry key in an agent procedure, then run the agent procedure on a machine
ID for which these values are invalid, you can be notified about the agent procedure failure using
this alerts page.

 Logging Failed Steps in Procedures - The System > Configure page includes the following option -
Enable logging of procedure errors marked "Continue procedure if step fail" - If checked, failed steps in

procedures are logged. If blank, failed steps in procedures are not logged.

 Preventing the Logging of Successful Child Script Execution - The System > Configure page includes
the following option - Enable logging of successful child script execution in agent procedure log - If

unchecked, child script success entries are not included in the agent procedure log. This can
reduce the size of the agent procedure log tremendously. It takes up to 5 minutes for the KServer
to read this setting change.

 View Definitions - You can filter the display of machine IDs on any agent page using the following

agent procedure options in View Definitions.

 With procedure scheduled/not scheduled

 Last execution status success/failed

 Procedure has/has not executed in the last N days

 Service Desk - When a ticket service procedure is run, it can execute an agent procedure

(http://help.kaseya.com/webhelp/EN/KSD/9040000/index.asp#6267.htm).

Action Buttons
Agent procedures are organized using two folder trees in the middle pane, underneath Private and
Shared cabinets. The following action buttons display, depending on the object selected in the folder

tree.

When a Cabinet is Selected

 Collapse All - Collapses all branches of the folder tree.

 Expand All - Expands all branches of the folder tree.

Always Available

 Manage Files - See Manage Files Stored on Server (page 38) for more information.

 Manage Variables - See Variable Manager (page 37) for more information.

 (Apply Filter) - Enter text in the filter edit box, then click the funnel icon to apply filtering to the

folder trees. Filtering is case-insensitive. Match occurs if filter text is found anywhere in the folder
trees.

http://help.kaseya.com/webhelp/EN/KSD/9040000/index.asp#6267.htm

 Schedule / Create

 3

When a Folder is Selected

 Share Folder - Shares a folder with user roles and individual users. Applies to shared cabinet

folders only.

Note: See guidelines for share rights to objects within folder trees in the Folder Rights (page 39)

topic.

 New Procedure - Opens the agent procedure editor to create a new procedure in the selected folder
of the folder tree. See Creating / Editing Agent Procedures (page 4).

 New Folder - Creates a new folder underneath the selected cabinet or folder.

 Delete Folder - Deletes a selected folder.

 Rename Folder - Renames a selected folder.

 Import Folder/Procedure - Imports a folder or procedure as children to the selected folder in the

folder tree. Applies to private cabinet folders only.

Note: The Import Center will import a previously exported shared agent procedure folder or procedure

to the Shared cabinet. It will not overwrite any folder or procedure using the same name and tree

path.

 Export Folder - Exports the selected folder and all its procedures as an XML file. The XML file can

be re-imported.

Additional Actions When a Procedure is Selected

 Edit Procedure - Opens the agent procedure editor to edit the selected procedure. See Creating /
Editing Agent Procedures (page 4).

 Rename Procedure - Renames the selected procedure.

 Delete Procedure - Deletes the selected procedure. Agent procedures that are used by other agent

procedures cannot be deleted.

 Export Procedure - Exports the selected procedure.

Scheduling Agent Procedures
Manage the scheduling of agent procedures using tabs in the right hand pane. When a procedure is

selected in the middle pane, the following tabs display In the right-hand pane.

 Schedule - Select one or more machine IDs in this tab's table, then click one of the following action

buttons:

 Schedule Procedure - Schedule a task once or periodically. Each type of recurrence—Once,

Hourly, Daily, Weekly, Monthly, Yearly—displays additional options appropriate for that type
of recurrence. Periodic scheduling includes setting start and end dates for the recurrence.

Not all options are available for each task scheduled. Options can include:

 Schedule will be based on the timezone of the agent (rather than server) - If checked, time

settings set in the Scheduler dialog reference the local time on the agent machine to
determine when to run this task. If blank, time settings reference server time, based on
the server time option selected in System > Preferences. Defaults from the System >

Default Settings page.

 Distribution Window - Reschedules the task to a randomly selected time no later than the

number of periods specified, to spread network traffic and server loading. For example,
if the scheduled time for a task is 3:00 AM, and the distribution window is 1 hour, then
the task schedule will be changed to run at a random time between 3:00 AM and 4:00

AM.

Schedule / Create

4

 Skip if offline - If checked and the machine is offline, skip and run the next scheduled

period and time. If blank and the machine is offline, run the task as soon as the
machine is online again. Applies only to recurring schedules, a 'Once' schedule always

executes the next time the agent is online.

 Power up if offline - Windows only. If checked, powers up the machine if offline. Requires

Wake-On-network or vPro and another managed system on the same network.

 Exclude the following time range - Applies only to the distribution window. If checked,

specifies a time range to exclude the scheduling of a task within the distribution
window. Specifying a time range outside of the distribution window is ignored by the

scheduler.

Note: You can stagger the running of scheduled agent procedures using Agent Procedures
> Distribution (page 40).

 Run Now - Run this agent procedure on each selected machine ID immediately.

 Cancel - Cancel the scheduled agent procedure on each selected machine ID.

 View Procedure - Provides a display only view of the procedure. A user can execute an agent
procedure and view it without necessarily being able to edit it. See Folder Rights (page 39) for

more information.

 Used by - Displays a list of other procedures that execute this procedure. Agent procedures that

are used by other agent procedures cannot be deleted.

 Approval History - Displays a list of dates and users that approved the procedure.

Recurring Agent Procedures

Use the Agent Procedure Status (page 41) page to identify the list of recurring agent procedures

assigned to each agent.

Creating / Editing Agent Procedures

Creating / Editing Agent Procedures

To create a new procedure, select a cabinet or folder in the middle pane, then click the New Procedure

button to open the Creating / Editing Agent Procedures (page 4).

To edit an existing procedure, select the procedure, then click the Edit Procedure button to open the

Creating / Editing Agent Procedures (page 4). You can also double-click a procedure to edit it.

Note: Access to creating or editing a procedure depends on your Folder Rights (page 39).

The Agent Procedure Editor

All statements you can add to an agent procedure display in the left-hand pane. Agent procedures
display in the middle pane of the editor on one more tabs. The parameters for each statement display

in the right-hand pane.

Note: See IF-ELSE-STEP Statements (page 6) for a detailed explanation of each statement's

parameters.

Action Buttons

These buttons display in the middle pane of the procedure editor.

 Procedure

 New - Creates an empty tab for a new procedure.

 Schedule / Create

 5

 Open - Edits an existing procedure.

 Save - Saves the currently selected procedure.

 Save As - Saves the procedure to a different name. A dialog enables you to select the folder

used to save the procedure.

 Edit - The following buttons are only enabled when one or more statements are selected.

 Undo - Undoes the last edit.

 Redo - Redoes the last edit.

 Cut - Cuts selected lines.

 Copy - Copies selected lines.

 Paste - Pastes copied lines.

 Remove - Removes selected lines.

 Goto Line - Selects the line number you specify.

 Search - Searches for matching text in commands, parameters and values.

 Insert Lines - Inserts a blank line that you can then begin typing into. This displays a

drop-down list of commands that you can select a command from and insert into the

procedure.

 Indent Lines - Indents selected lines

 Outdent Lines - Outdents selected lines.

 Help

 Help Tips - Display tooltips on how to use the procedure editor.

 Online Help - Displays online help.

Drag and Drop

 Drag and drop any statement above or below any other statement.

 Drag and drop any comment above or below any statement.

 A statement is automatically indented when dropped below an IF statement, except for an ELSE
statement.

 You can nest steps within multiple IF or ELSE statements. Just drag-and-drop an IF or ELSE
statement below an IF statement to insert it as a child statement.

Guidelines

 Click any STEP, IF or ELSE statement in the middle pane to see its settings in the right-hand
pane. You can edit these settings in the right hand pane or click any value in a statement directly
to edit it.

 Multiple lines can be selected and acted on at one time.

 Right click selected lines to get additional options.

 Enter a value at the top of the left pane to filter the list of statements you can select.

 Hovering the cursor over any statement in the left or middle pane displays a tooltip description of
that statement. The same description displays at the top of the third pane.

 Hovering the cursor to the left of selected statements displays icons. Click these icons to
remove, indent or outdent selected statements.

 When entering a value for a variable into a parameter:

 Enter a < to select from a list of system variables.

 Enter a # to select from a list of user defined variables (page 35).

 Open and work on multiple procedures simultaneously. Each procedure you open displays in a
separate tab. Copy and paste selected statements between tabs.

 You can set a STEP to Continue on Fail. This allows a procedure to continue running even if
that particular STEP fails.

Schedule / Create

6

 Click the blank line at the bottom of the procedure to edit the description for the entire procedure.

IF-ELSE-STEP Commands
The following is a summary of standard IF-ELSE-STEP commands used in VSA agent procedures.

IF Definitions

checkVar() (page 9) Evaluates the given agent variable. See Using Variables (page 35).

else (page 10) Adds an Else branch to run steps when an If branch returns a False
result.

eval() (page 10) Compares a variable with a supplied value.

getOS() (page 10) Determines if the current Windows OS is 32 or 64-bit.

getRAM() (page 10) Evaluates the total amount of memory reported by the latest audit of
the agent.

getRegistryValue() (page 11) Evaluates the given registry value.

hasRegistryKey() (page 11) Tests for the existence of the given registry key.

isAppRunning() (page 12) Checks to see if a specified application is currently running on the
managed machine.

isServiceRunning() (page 12) Determines if a service is running on the managed machine.

isUserActive() (page 12) Determines whether the user is either:

 Idle or not logged on, or

 Active

isUserLoggedin() (page 12) Tests whether a specific user, or any user, is logged in or not.

isYesFromUser() (page 12) Presents a Yes/No dialog box to the user.

testFile() (page 13) Tests for the existence of a file.

testFileInDirectoryPath() (page 13) Tests for the existence of a file in the current directory path returned
by getDirectoryPathFromRegistry().

true (page 13) Always returns True, executing If branch.

STEP Definitions

alarmsSuspend() (page 14) Suppresses alarms on a machine for a specified number of minutes.

alarmsUnsuspendAll() (page 14) Stops the suppression of alarms on a machine.

captureDesktopScreenshot() (page 14) Captures a desktop screenshot of the agent machine and uploads it
to the Kaseya Server.

changeDomainUserGroup() (page 14) Changes a domain user's membership in a domain user group.

changeLocalUserGroup() (page 14) Changes a local user's membership in a local user group.

closeApplication() (page 14) Closes a running application.

comment() (page 15) Adds a one-line comment to the procedure.

copyFile() (page 15) Copies a file from one directory to another.

copyUseCredentials() (page 15) Copies a file from one directory to another using a user credential.

createDomainUser() (page 15) Adds a new user to an Active Directory domain when run on a domain

 Schedule / Create

 7

controller.

createEventLogEntry() (page 15) Creates an event log entry in either the Application, Security or
System event log types. You can create a Warning, Error or
Informational event with your own description.

createLocalUser() (page 16) Adds a new local user account to a machine.

createWindowsFileShare() (page 16) Creates a new file share on a Windows machine.

deleteDirectory() (page 16) Deletes a directory from the agent machine.

deleteFile() (page 16) Deletes a file from the managed machine.

deleteFileInDirectoryPath() (page 16) Deletes file in directory returned by getDirectoryPathFromRegistry().

deleteRegistryKey() (page 17) Deletes a key from the registry.

delete64BitRegistryKey() (page 17) Deletes a 64-bit (page 34) key from the registry.

deleteRegistryValue() (page 17) Deletes a value from the registry.

delete64BitRegistryValue() (page 17) Deletes a 64-bit (page 34) value from the registry.

deleteUser() (page 17) Deletes a user from the agent machine.

disableUser() (page 17) Disables a user, preventing logon to the agent machine.

disableWindowsService() (page 17) Disables a Windows service.

enableUser() (page 18) Enables a previously disabled user, allowing the user to logon to the
OS.

executeFile() (page 18) Executes any file as if it was run from the Run item in the Windows
Start menu.

executeFileInDirectoryPath() (page 18) Same as execute file. File location is relative to the directory returned
by getDirectoryPathFromRegistry().

executePowershell() (page 18) Executes a powershell file, or command with arguments or both.

executePowerShell32BitSystem (page 18) Executes a powershell file, or command with arguments or both, as a
32 bit system command.

executePowerShell32BitUser (page 18) Executes a powershell file, or command with arguments or both, as a
32 bit user command.

executePowerShell64BitSystem (page 18) Executes a powershell file, or command with arguments or both, as a
64 bit system command.

executePowerShell64BitUser (page 18) Executes a powershell file, or command with arguments or both, as a
64 bit user command.

executeProcedure() (page 19) Starts another VSA agent procedure on the current machine.

executeShellCommand() (page 19) Runs any command from a command shell.

executeShellCommandToVariable() (page
20)

Executes a shell command and returns output created during and
after its execution to a variable.

executeVBScript() (page 20) Runs a Vbscript, with or without command line arguments.

getDirectoryPathFromRegistry() (page 20) Returns the directory path stored in the registry at the specified
location. Result used in subsequent steps.

getFile() (page 20) Gets a file from the managed machine and saves it to the Kaseya
Server.

getFileInDirectoryPath() (page 21) Gets a file from the managed machine located relative to the directory
returned by getDirectoryPathFromRegistry() and saves it to the Kaseya

Server.

getURL() (page 21) Returns the text and HTML contents of a URL and stores it to a file on
the managed machine.

getURLUsePatchFileSource() (page 21) Downloads a file from a given URL to a target folder and file for that
agent. Uses the Patch Management > File Source settings.

Schedule / Create

8

getVariable() (page 22) Gets a value from the agent on the managed machine and assigns it
to a variable. See Using Variables (page 35).

getVariableRandomNumber() (page 22) Generates a random number.

getVariableUniversalCreate() (page 22) Gets a variable that persists outside of the immediate procedure's
execution.

getVariableUniversalRead() (page 23) Reads up to three variables you have previously created using the
getVariableUniversalCreate() step.

giveCurrentUserAdminRights() (page 23) Adds the current user to the local administrator’s group on the agent
machine, either permanently or for a temporary period of time.

impersonateUser() (page 23) Specifies the user account to use when executing a file or shell when
Execute as the logged on user is specified in a subsequent command.

installAptGetPackage() (page 23) Silently installs a package using the apt-get command in Linux.

installDebPackage() (page 24) Silently installs a Debian package on any Linux OS that supports
.deb packages.

installDMG() (page 24) Silently installs a .DMG package in OS X.

installMSI() (page 24) Installs an MSI file for Windows.

installPKG() (page 24) Silently installs a .PKG package in OS X.

installRPM() (page 24) Silently installs an RPM package on any Linux OS that supports
installing RPMs.

logoffCurrentUser() (page 25) Automatically logs off the current user.

pauseProcedure() (page 25) Pauses the procedure for N seconds.

reboot() (page 25) Reboots the managed machine.

rebootWithWarning() (page 25) Reboots a machine, displaying a warning message to the end-user
before the reboot process occurs.

removeWindowsFileShare() (page 25) Removes a file share from a Windows agent.

renameLockedFile() (page 25) Renames a file that is currently in use.

renameLockedFileInDirectoryPath()
(page 26)

Renames a file currently in use in directory returned by
getDirectoryPathFromRegistry().

scheduleProcedure() (page 26) Schedules an agent procedure to run on a specified machine.

sendAlert() (page 26) Creates an alert based on a previous getVariable() command.

sendEmail() (page 28) Sends an email to one or more recipients.

sendMessage() (page 28) Displays a message in a dialog box on the managed machine.

sendURL() (page 28) Opens a browser to the specified URL on the managed machine.

setRegistryValue() (page 28) Sets the registry value to a specific value.

set64BitRegistryValue() (page 28) Sets the 64-bit (page 34) registry value to a specific value.

sqlRead() (page 29) Returns a value from the database and stores it to a named variable
by running a selected SQL "read" statement.

sqlWrite() (page 29) Updates the database by running a selected SQL "write" statement.

startWindowsService() (page 30) Runs a Start command for a Windows service, if it exists.

stopWindowsService() (page 30) Runs a Start command for a Windows service if it exists.

transferFile() (page 30) Transfers a file from the agent machine running this step to another
agent machine.

uninstallbyProductGUID() (page 31) Silently uninstalls a product based on its MSI GUID.

unzipFile() (page 31) Extracts the contents of a specified zip file to a target folder.

 Schedule / Create

 9

updateSystemInfo() (page 31) Updates the selected System Info field with the specified value.

useCredential() (page 31) Specifies that the agent credential should be used when Execute as the
logged on user is specified in a subsequent command.

windowsServiceRecoverySettings()
(page 32)

Sets the Service Recovery Settings for any given service in Windows.

writeDirectory() (page 32) Writes a directory from the server to the managed machine.

writeFile() (page 32) Writes a file stored on the Kaseya Server to the managed machine.

writeFileFromAgent() (page 33) Transfers a file from another agent machine to the agent machine
running this step.

writeFileInDirectoryPath() (page 33) Writes a file stored on the Kaseya Server to the managed machine
using the directory returned by getDirectoryPathFromRegistry().

writeProcedureLogEntry() (page 33) Writes a string to the Agent Procedure Log.

writeTextToFile() (page 33) Writes text to a file on the agent machine.

zipDirectory() (page 33) Compresses a directory and any subdirectories or files it contains into
a zip file on the agent machine.

zipFiles() (page 33) Compresses a single file or files into a zip file on the agent machine.

IF Commands

checkVar()

Enter a variable name, in the form #var_name#, in the space provided. checkVar() evaluates the current

values assigned #var_name# and compares it with the supplied value. The supplied value may also be

another variable name in the form of #var_name2#. If the check is true, IF commands are executed. If
the check is false, ELSE steps are executed. See Using Variables (page 35). The available tests are:

 Exists : true if the variable exists.

Note: If this test is run on a managed variable (page 37), this step will fail for all machine groups that

don’t have a value specified for the managed variable. An error message will display in the agent

procedure log, stating Script Variable Not Found.

 Does Not Exist : true if the variable does not exist.

 = : true if value of the variable equals the test value.

 Not = : true if value of the variable does not equal the test value.

 > : true if value of the variable is greater than the test value.

 >= : true if value of the variable is greater than or equal to the test value.

 < : true if value of the variable is less than the test value.

 <= : true if value of the variable is less than or equal to the test value.

 Contains : true if the test value is a sub string of the variable value.

 Not Contains : true if the test value is not a sub string of the variable value.

 Begins With : true if the variable value begins with the test value.

 Ends With : true if the variable value ends with the test value.

For the tests =, Not =, >, >=, <, and <= the variables compared may be a string, a number, a date in the

format of yyyy/mm/dd or yyyy/mm/dd hh:mm or yyyy/mm/dd hh:mm:ss, or a version number

containing dots or commas such as 1.2.3 or 4,5,6,7. Values in variables are stored as strings, so

compared numbers must be of equal string length. If a date format is specified, it may be offset using +

Schedule / Create

10

dd:hh:mm:ss or - dd:hh:mm:ss. Only dd days are required; hh hours, mm minutes, and ss seconds

may be omitted and are assumed to be zero when absent. CURRENT_TIMESTAMP may be specified to
indicate that the current time be substituted in the comparison at the time the procedure is

executed. e.g. CURRENT_TIMESTAMP - 7:12:00:00 will be evaluated as 7 days and 12 hours

subtracted from the time that the procedure is executed.

Example - Sample Procedures.Managed Services.Network Tests.Ping IP Address 2

If checkVar("#pingtest#") Does Not Contain "Lost = 0"

else

Adds an Else command underneath a corresponding If command. Any steps listed under the Else

command are executed when the corresponding If command returns a False result.

Example - Sample Procedures.Managed Services.Disk Mgmt.Clean.Windows Disk Cleanup (wdc)

If
hasRegistryKey("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Expl
orer\VolumeCaches\Compress old files") Does Not Exist
 executeProcedure(WDC Step 1", " ", "Immediate", "All Operating Systems", "Halt on
Fail")
Else
 executeProcedure(WDC Step 2", " ", "Immediate", "All Operating Systems", "Halt on
Fail")

eval()

Enter a numerical expression containing one or more variable names, in the form #var_name#, in the

space provided. eval() uses the current value assigned to each #var_name#, evaluates the
mathematical expression, and compares it with the supplied value. The supplied value may also be

another expression. The mathematical expression may contain +, -, *, /, (, and). e.g. (3.7 +
(200 * #countA#)) / (#countB# - #countC#). If the check is true, IF steps are executed. If the
check is false, ELSE steps are executed. The available tests are:

 = : true if value of the variable equals the test value.

 Not = : true if value of the variable does not equal the test value.

 > : true if value of the variable is greater than the test value.

 >= : true if value of the variable is greater than or equal to the test value.

 < : true if value of the variable is less than the test value.

 <= : true if value of the variable is less than or equal to the test value.

Note: Cannot be used with Exists, Does Not Exist, Contains, or Not Contains operators.

Example

If eval("#currentvalue# + 1") Is Greater Than "#maximumValue#"

getOS()

Determines if the current Windows OS is 32 or 64-bit.

Operating systems supported: Windows

Example

If getOS() 64-Bit Windows

getRAM()

Evaluates the total amount of memory in megabytes reported by the latest audit of the agent. This
could come in helpful in ensuring a system meets the resource requirements of an application before

 Schedule / Create

 11

an installation is attempted.

Operating systems supported: Windows, OS X, Linux

Example

If getRAM() Is Less Than "8500"

hasRegistryKey() / has64BitRegistryKey()

Warning: Certain registry locations require 64-Bit Commands (page 34) for 64-bit Windows machines.

Tests for the existence of a registry key. hasRegistryKey() differs from getRegistryValue() (page 11) since

it can check for a directory level registry entry that only contains more registry keys (no values).

Example - Core.1 Windows Procedures.Desktops.Maintenance.Common Maintenance Tasks.Disk

Cleanup.Windows Disk Cleanup

If
hasRegistryKey("HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\Current
Version\explorer\VolumeCaches\Compress Old Files\") Exists

getRegistryValue() / get64BitRegistryValue

Warning: Certain registry locations require 64-Bit Commands (page 34) for 64-bit Windows machines.

After entering the registry path, the value contained in the key is returned. A check can be made for
existence, absence, equality, or size differences. For example,
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\AppPaths\AgentMon.ex
e\path contains the directory path identifying where the agent is installed on the target machine. The

test determines if the value stored for this key exists, thereby verifying the agent is installed.

The available tests are:

 Exists : true if the registry key exists in the hive.

 Does Not Exist : true if the registry key does not exist in the hive.

 = : true if value of the registry key equals the test value.

 Not = : true if value of the registry key does not equal the test value.

 > : true if value of the registry key is greater than the test value (value must be a number).

 >= : true if value of the registry key is greater than or equal to the test value (value must be a

number).

 < : true if value of the registry key is less than the test value (value must be a number).

 <= : true if value of the registry key is less than or equal to the test value (value must be a number).

 Contains : true if the test value is a sub string of the registry key value (value must be a string).

 Not Contains : true if the test value is not a sub string of the registry key value (value must be a
string).

Using the Backslash Character (\)

A backslash character \ at the end of the key returns the default value of that key.
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\WORDPAD.EXE\ returns a default value, such as %ProgramFiles%\Windows
NT\Accessories\WORDPAD.EXE

The last single backslash in a string is used to delimit the registry key from the registry value. To
include backslashes as part of the value string, specify double slashes for each slash character. For

example, the string HKEY_LOCAL_MACHINE\SOFTWARE\SomeKey\Value\\Name is interpreted as the

key HKEY_LOCAL_MACHINE\SOFTWARE\SomeKey with a value of Value\Name.

Example

Schedule / Create

12

if isUserLoggedIn(" ")
 getVariable("Registry Value",
"HKEY_CURRENT_USER\KaseyaAgent-HKCUTest\TestREG_DWORD", "regDWORD", "All Operating
Systems, "Halt on Fail"

isAppRunning()

Checks to see if a specified application is currently running on the managed machine. If the application
is running, the IF command is executed; otherwise, the ELSE command is executed. When this option is
selected from the drop-down list, the Enter the application name field appears. Specify the process name

for the application you want to test. For example, to test the Calculator application, specify

calc.exe, which is the process name that displays in the Processes tab of the Windows Task Manager.

Example

If isAppRunning("Skype.exe")

isServiceRunning()

Determines if a service is running on the managed machine. Specify the service name.

 True if the service name is running.

 False if the service name is stopped or does not exist.

Note: Be sure to use the service name of the service, not the display name of the service. For example,

the display name of the service for Microsoft SQL Server is SQL Server (MSSQLSERVER), but the service
name of the service is MSSQLSERVER. For Windows machines, right click any service in the Services window

and click the Properties option to see the service name of that service.

Example

If isServiceRunning("RemoteRegistry")

isUserActive()

Determines whether the user is either:

 Idle or not logged on, or

 Active

Operating systems supported: Windows, OS X, Linux

Example

If isUserActive() User is idle or not logged in

isUserLoggedin()

Tests to see if a specific user or any user is logged on the managed machine. Enter the machine user's
logon name or leave the field blank to check for any user logged on. The IF commands are executed if

a user is logged on. The ELSE steps are executed if a user is not logged on.

Example

If isUserLoggedIn(" ")

isYesFromUser()

Displays a dialog box on the managed machine with Yes and No buttons. Also carries out the ELSE
command if a specified amount of time has timed out. If Yes is selected by the machine user, the IF
command is executed. If the selection times out or the machine user selects No, the ELSE command is

executed. This function requests the machine user's permission to proceed with the agent procedure.
This query is useful for agent procedures that require a reboot of the managed machine before

completion.

 Schedule / Create

 13

Procedure variables, for example #varName#, may be used inside isYesFromUser() fields to dynamically

generate messages based on procedure data.

Delimit the text displayed by the button labels and message using three or more plus characters (+++).

Example - Sample Procedures.Agent Control.Reboot-Ask-Yes-2

If isYesFromUser("+++YES:Reboot Now+++NO:Continue Working+++The system
administrator needs to Reboot your computer. Reboot now?", 5)

testFile()

Determines if a file exists on a managed machine. Enter the full path and file name. testFile() compares
the full path and file name with the supplied value. If the check is true, IF commands are executed. If the

check is false, ELSE steps are executed.

Note: Environment variables such as %windir%\notepad.exe are acceptable.

The available tests are:

 Exists : true if the full path and file name exists.

 Does not Exist : true if the full path and file name does not exist.

 Contains : true if the test value is a sub string of the file content.

 Not Contains : true if the test value is not a sub string of the file content.

 Begins With : true if the test value begins with the variable value.

 Ends With : true if the test value ends with the variable value.

Example - Core.1 Windows Procedures.Desktops.Machine Control.Networking.Block Websites.Clear
All Blocked Websites

If testFile("%windir%\System32\drivers\etc\hosts") Exists

testFileInDirectoryPath()

Tests the specified file located at the path returned using the getDirectoryPathFromRegistry() (page

20) step. The available tests are:

 Exists : true if the file name exists.

 Does not Exist : true if the file name does not exist.

 Contains : true if the test value is a sub string of the file content.

 Not Contains : true if the test value is not a sub string of the file content.

 Begins With : true if the test value begins with the variable value.

 Ends With : true if the test value ends with the variable value.

Example - Core.3 Linux Procedures.Software Control.Applications.Install CHKCONFIG

If testFileInDirectoryPath("/var/tmp/installed-software.read") Contains
"chkconfig"

true

Selecting True directs the IF commands to execute. Use True to directly execute a series of steps that
do not require any decision points, such as determining whether a file exists using testFile() (page 13).

Note: Using IF TRUE is not required. It is included for backwards compatibility with 5.x scripts and

earlier that have been migrated forward.

Example - Sample Procedures.Agent Control.Reboot

If true
 reboot("All Operating Systems", "Halt on Fail")

Schedule / Create

14

STEP Commands

alarmsSuspend()

Suppresses alarms on a machine for a specified number of minutes. Updates the status of machines

on the Monitor > Status > Suspend Alarm page.

Example - Core.1 Windows Procedures.Servers.Print Server.Print Server

alarmsSuspend(1, "All Windows Operating Systems", "Halt on Fail")

alarmsUnsuspendAll()

Stops the suppression of alarms on a machine. Updates the status of machines on the Monitor >

Status > Suspend Alarm page.

Example - Core.1 Windows Procedures.Servers.Print Server.Print Server

alarmsUnsuspendAll("All Windows Operating Systems", "Halt on Fail")

captureDesktopScreenshot()

Captures a desktop screenshot of the agent machine and uploads it to the Kaseya Server. The
screenshot is saved as a PNG file with a unique name in a folder dedicated to that agent. You can
access these files from the Audit > Documents page or from Live Connect. End-user notification
options must be selected based on the level of user notification desired, silently capturing a
screenshot, notifying the user that the capture will take place, or asking to approve the capture. A
custom message can be entered if end-user notification or permission requesting is selected.

Otherwise a standard message displays.

Operating systems supported: Windows, OS X

Example

captureDesktopScreenshot("Silent Capture", " ", "All Operating Systems", "Halt on
Fail")

changeDomainUserGroup()

Changes a domain user's membership in a domain user group. This STEP must be run on a domain
controller. Enter the domain username of the member being added or removed from the domain user

group. Then select whether to add or remove membership. Then select the domain user group.

Operating systems supported: Windows

Example

changeDomainUserGroup(#username", "Add Permission", "Domain Users", "All Operating
Systems", "Halt on Fail")

changeLocalUserGroup()

Changes a local user's membership in a local user group. Enter the local username of the member
being added or removed from the local user group. Then select whether to add or remove membership.

Then select the group.

Operating systems supported: Windows

Example

changeLocalUserGroup("#username#", "Add Permission", "Users", "All Operating
Systems", "Halt on Fail")

closeApplication()

If the specified application is running on the managed machine, then that application is closed down.

 Schedule / Create

 15

Specify the process name for the application you want to close. For example, to close the Calculator

application, specify calc.exe, which is the process name that displays in the Processes tab of the
Windows Task Manager.

Example

closeApplication("Skype.exe", "All Operating Systems", "Halt on Fail")

comment()

Adds a one line comment to the procedure.

Example

// The IRPStackSize setting for this machine is #IRPStackSize#

copyFile()

Copies a file from one directory to another on the agent machine. If the target file exists, you must
check a box to overwrite an existing file. Be sure to keep in mind folder syntax when running this STEP

across different operating systems, for example, c:\temp\tempfile.txt for Windows and

/tmp/tempfile.txt for OS X and Linux.

Operating systems supported: Windows, OS X, Linux

Example

copyFile("%appdata%\Microsoft\Templates\#template#",
"e:\templates_archive\#template#", true, "All Operating Systems", "Halt on Fails")

copyUseCredentials()

Copies a file from a directory on a machine and attempts to copy the file to a target directory and

filename. The copy process uses either:

 The agent credential specified for an agent using Agent > Manage Agents, or

 The user credential specified by an impersonateUser() (page 23) step before this step.

This STEP is mostly used for accessing files across network UNC shares. If the target file exists, you
must check a box to overwrite an existing file. Be sure to keep in mind folder syntax when running this

STEP across different operating systems, for example, c:\temp\tempfile.txt for Windows and

/tmp/tempfile.txt for OS X and Linux.

Operating systems supported: Windows, OS X, Linux

Example

useCredential("All Operating Systems", "Halt on Fail")
copyFileUseCredentials("c:\logging\logfile.log",
"\\fileserver\log_archive\logfile.log", true, "All Operating Systems", "Halt on
Fail")

createDomainUser()

Adds a new user to an Active Directory domain when run on a domain controller. Enter a domain user
name to create, then a password that meets the domain's complexity requirements for user accounts,

then select the domain group the user will be added to, either Domain Users or Domain Admins.

Operating systems supported: Windows

Example

createDomainUser("#username#", "******", "Domain Users", "All Operating Systems",
"Halt on Fail")

createEventLogEntry()

Creates an event log entry in either the Application, Security or System event log types. You can create

Schedule / Create

16

a Warning, Error or Informational event with your own description. The created event is hard-coded to

use an Event ID of 607.

Operating systems supported: Windows

Example

createEventLogEntry("This is a test event log entry", "Error", "Application", "All
Operating Systems", "Halt on Fail")

createLocalUser()

Adds a new local user account to a machine. Enter a local user name to create, then a password that

meets local user account complexity requirements, then select the group the user will be added to.

Operating systems supported: Windows, OS X, Linux

Example

createLocalUser("#username#", "******", "Administrator", "All Operating Systems",
"Halt on Fail")

createWindowsFileShare()

Creates a new file share on the Windows machine being managed by the agent. You must type in the

name of the file share as it will be accessed over the network—without the \\computername\
prefix—and enter the source folder on the agent machine for the file share. This folder will be created if
it does not yet exist. You can remove a file share using the removeWindowsFileShare() (page 25)

command.

Operating systems supported: Windows

Example

createWindowFileShare("#sharename#", "c:\sharedlocalfolder", "All Operating
Systems", "Halt on Fail")

deleteDirectory()

Deletes a directory from an agent machine. Ensure you have your directory syntax correct for Windows
vs. OS X/ Linux. To ensure all sub-directories and files are also removed, check the Recursively delete

subdirectories and files checkbox.

Operating systems supported: Windows, OS X, Linux

Example

deleteDirectory("#localfolder#", "Recursively delete", "All Operating Systems",
"Halt on Fail")

deleteFile()

Deletes a file on a managed machine. Enter the full path and filename.

 Environment variables are acceptable if they are set on a user's machine. For example, using a
path %windir%\notepad.exe would be similar to C:\windows\notepad.exe.

 You can delete a file that is currently in use using the renameLockedFile() (page 25) command.

Example

deleteFile("#pathfilename#", "All Operating Systems", "Halt on Fail")

deleteFileInDirectoryPath()

Deletes the specified file located at the path returned using the getDirectoryPathFromRegistry()

(page 20) command.

Example

 Schedule / Create

 17

If isUserLoggedIn(" ")
 getDirectoryPathFromRegistry(HKEY_CURRENT_USER\KaseyaAgent-HKCUTest\TestDirect
oryPath", "All Operating System, "Halt on Fail")
 deleteFileInDirectoryPath(test.txt", "All Operating Systems", "Halt on Fail")

deleteRegistryKey() / delete64BitRegistryKey()

Warning: Certain registry locations require 64-Bit Commands (page 34) for 64-bit Windows machines.

Deletes the specified registry key and all its sub-keys.

Example - Core.1 Windows Procedures.Desktops.Maintenance.Common Maintenance Tasks.Disk

Cleanup.Windows Disk Cleanup

deleteRegistryKey("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\E
xplorer\VolumeCaches\Compress old files", "All Operating Systems", "Halt on Fail")

deleteRegistryValue() / delete64BitRegistryValue

Warning: Certain registry locations require 64-Bit Commands (page 34) for 64-bit Windows machines.

Deletes the value stored at the specified registry key. The last single backslash in a string is used to
delimit the registry key from the registry value. To include backslashes as part of the value string,
specify double slashes for each slash character. For example, the string

HKEY_LOCAL_MACHINE\SOFTWARE\SomeKey\Value\\Name is interpreted as the key

HKEY_LOCAL_MACHINE\SOFTWARE\SomeKey with a value of Value\Name.

Example - Core.4 Other Tools and Utility Procedures.AutoAdminLogon.Disable AutoAdminLogon

deleteRegistryValue("HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\DefaultPassword", "Windows 8.1", "Continue on Fail")

deleteUser()

Deletes a user from the agent machine.

Operating systems supported: Windows, OS X, Linux

Example

deleteUser("#admin_name#", "All Operating Systems", "Halt on Fail")

disableUser()

Disables a user, preventing logon to the agent machine.

Operating systems supported: Windows, OS X, Linux

Example

disableUser("#username#", "All Operating Systems", "Halt on Fail")

disableWindowsService()

Disables a Windows service. See startWindowsService() (page 30), stopWindowsService() (page 30),

and windowsServiceRecoverySettings() (page 32).

Operating systems supported: Windows

Note: Be sure to use the service name of the service, not the display name of the service. For example,
the display name of the service for Microsoft SQL Server is SQL Server (MSSQLSERVER), but the service
name of the service is MSSQLSERVER. For Windows machines, right click any service in the Services window

and click the Properties option to see the service name of that service.

Schedule / Create

18

Example

disableWindowsService("#service_name#", "All Operating Systems", "Halt on Fail")

enableUser()

Enables a previously disabled user, allowing the user to logon to the OS.

Operating systems supported: Windows, OS X

Example

enableUser("#username#", "All Operating Systems", "Halt on Fail")

executeFile()

Executes the specified file on the managed machine. This function replicates launching an application
using the Run… command located in the Microsoft Windows Start menu. This function takes three

parameters:

 Full path filename to the .exe file.

 Argument list to pass to the .exe file

 Option for the procedure to wait until the .exe completes or not.

Note: Environment variables are acceptable, if they are set on a user's machine. For example, using a
path %windir%\notepad.exe, would be similar to C:\windows\notepad.exe.

If Execute as the logged on user is selected, then a credential must be specified by running either the
impersonateUser() (page 23) or useCredential() (page 31) command before this command. If run

Execute as the system account is selected, execution is restricted to the agent's system level access.

Example - Sample Procedures.Managed Services.System Mgmt.Shutdown

executeFile("%windir%\system32\shutdown.exe", "-s -f", "Execute as System and
Continue", "Windows 8.1", "Halt on Fail")

executeFileInDirectoryPath()

Same as executeFile() (page 18) except the location of the .exe file is located at the path returned from

a getDirectoryPathFromRegistry() (page 20) command.

If Execute as the logged on user is selected, then a credential must be specified by running either the
impersonateUser() (page 23) or useCredential() (page 31) command before this command. If run

Execute as the system account is selected, execution is restricted to the agent's system level access.

Example

getDirectoryPathFromRegistry(HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Adobe\Adobe
Acrobat\9.0\Installer\Acrodist.exe", "All Operating System, "Halt on Fail")
executeFileInDirectoryPath(" ", " ", "Execute as System and Continue", "All Operating
Systems", "Halt on Fail")

executePowershell()

Executes a powershell script, including:

 a Powershell .PS1 file

 a Powershell command with special arguments

 a combination of both

Operating systems supported: Windows XP SP3+/Server 2008 with Powershell add-on, Windows 7,

Windows Server 2008 or later

There are five variants of this command available.

 Schedule / Create

 19

 executePowershell() - Executes a powershell file, or command with arguments, or both. When

running this command on either a 32bit or 64bit machine, no system credential or user credential
is provided.

 executePowerShell32BitSystem - Executes a powershell file, or command with arguments, or both,

as a 32 bit system command.

 executePowerShell32BitUser - Executes a powershell file, or command with arguments, or both, as a

32 bit user command.

 executePowerShell64BitSystem - Executes a powershell file, or command with arguments, or both,

as a 64 bit system command.

 executePowerShell64BitUser - Executes a powershell file, or command with arguments, or both, as a

64 bit user command.

System and user commands:

 System - If a system command is run, execution is restricted to the agent's system level access.

 User - If a user command is selected, then a credential must be specified by running either the
impersonateUser() (page 23) or useCredential() (page 31) command before this command.

Example

executePowershellCommand64BitSystem("#ps_service_script#, "#servicename#", false,
"All Operating Systems", "All Windows Operating Systems, "Halt on Fail")

executeProcedure()

Causes another named procedure to execute. Use this capability to string multiple IF-ELSE-STEP

procedures together. If the procedure no longer exists on the Kaseya Server, an error message
displays next to the procedure drop-down list. You can use this command to run a system procedure.
You can nest procedures to 10 levels. You can include a time delay before running the called

procedure.

Example - Sample Procedures.Agent Control.Reboot-Ask-No

If isUserLoggedIn(" ")
 executeProcedure(Reboot-Ask-No-2", " ", "Immediate", "All Operating Systems",
"Halt on Fail")
Else
 reboot("All Operating Systems", "Halt on Fail")

executeShellCommand()

Allows the procedure to pass commands to the command interpreter on the managed machine. When
this command is selected, the field Enter the command to execute in a command shell is displayed. Enter a

command in the field. The command must be syntactically correct and executable with the OS version
on the managed machine. Commands and parameters containing spaces should be surrounded by
quotes. Since the command is executed relative to the agent directory, absolute paths should be used

when entering commands.

Note: executeShellCommand() opens a command prompt window on a managed Windows machine to execute in.

If you do not want a window opening on a managed Windows machine, because it might confuse users, put
all the commands in a batch file. Send that file to the managed Windows machine using the writeFile()

(page 32) command. Then run the batch file with the executeFile() (page 18) command. executeFile() does not

open a window on a managed Windows machine.

If Execute as the logged on user is selected, then a credential must be specified by running either the
impersonateUser() (page 23) or useCredential() (page 31) command before this command. If run

Execute as the system account is selected, execution is restricted to the agent's system level access.

Example - Sample Procedures.Agent Control.Remove K Menu

Schedule / Create

20

executeShellCommand("rmdir "%ALLUSERSPROFILE%\Start Menu\Programs\Kaseya" /S /Q",
"Execute as System", "Windows 8.1", "Halt on Fail")

executeShellCommandToVariable()

Executes a shell command and returns output created during and after its execution to a variable. The

variable must be referred to in subsequent steps as #global:cmdresults#.

Operating systems supported: Windows, Linux, OS X

Example

useCredential("All Operating Systems", "Halt on Fail")
executeShellCommandtToVariable("dir %APPDATA%", "User", true, "All Operating
Systems", "Halt on Fail")
pauseProcedure(2, "All Operating Systems", "Halt on Fail")
writeProcedureLogEntry("#global:cmdresults#", "All Operating Systems", "Halt on
Fail")

executeVBScript()

Runs a Vbscript, with or without command line arguments. If the Vbscript displays a popup window or
notifies the end user, check the box for Use Wscript instead of Cscript.

Operating systems supported: Windows

Example

writeFile("AddFavorite.vbs", "#TEMP%\AddFavorite.vbs", "All Operating Systems",
"Halt on Fail")
executeVBScript("%TEMP%\AddFavorite.vbs", "#favoritename# #favoriteURL#", false,
"All Operating Systems", "Halt on Fail")
deleteFile("%TEMP%\AddFavorite.vbs", "All Operating Systems", "Halt on Fail")

getDirectoryPathFromRegistry()

Returns a file path stored in the specified registry key. Use this command to fetch the file location. For
instance, use this command to find the directory where an application has been installed. The result

can be used in subsequent steps by:

 deleteFileInDirectoryPath() (page 16)

 executeFileInDirectoryPath() (page 18)

 getFileInDirectoryPath() (page 21)

 renameLockedFileInDirectoryPath() (page 26)

 testFileInDirectoryPath() (page 13) (an IF command)

 writeFileInDirectoryPath() (page 33)

Example

getDirectoryPathFromRegistry("HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Adobe\Adobe
Acrobat\9.0\Installer\AcroDist.exe", "All Operating Systems", "Halt on Fail")
executeFileInDirectoryPath(" ", " ", "Execute as User and Continue", "All Operating
Systems", "Halt on Fail")

getFile()

Upload the file at the specified path from the managed machine. Be sure to enter a full path filename

that you want to upload. Example: news\info.txt. Folders are created when the getFile() command is
run, if they don't already exist. The file is stored on the Kaseya Server in a private directory for each
managed machine. View or run the uploaded file using Agent Procedures > Get File (page 47).

 Schedule / Create

 21

 Optionally, existing copies of uploaded files are renamed with a .bak extension prior to the next
upload of the file. This allows you to examine both the latest version of the file and the previous
version.

 Optionally create a Get File alert if the uploaded file differs or is the same from the file that was

uploaded previously. You must create a Get File alert for a machine ID using the Monitor > Alerts
- Get File page to enable the sending of an alert using the getFile() command. Once defined for a
machine ID, the same Get File alert is active for any agent procedure that uses a getFile() command

and is run on that machine ID. Turn off alerts for specific files in the agent procedure editor by
selecting one of the without alerts options.

 See getFileInDirectoryPath() (page 21).

Example

getFile("c:\temp\NetStopInfoStore.txt", "backuplogs\NetStopInfoStore.txt",
"Overwrite existing file and sent alert if file changed", "All Operating Systems",
"Halt on Fail")

getFileInDirectoryPath()

Just like the getFile() (page 20) command but it adds the path returned from the
getDirectoryPathFromRegistry() (page 20) command to the beginning of the remote file path. Access

the uploaded file using the Agent Procedures > getFile() (page 47) function.

Example

getDirectoryPathFromRegistry("HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Dell\Client
SystemUpdate\InstallPath", "All Operating Systems", "Halt on Fail")
getFileInDirectoryPath("readme.txt", "readme.txt", "Overwrite existing file and send
alert if file changed", "All Operating Systems", "Halt on Fail")

getURL()

Returns the text and HTML contents of a URL and stores it to a file on the managed machine. To

demonstrate this to yourself, try specifying www.kaseya.com as the URL and c:\temp\test.htm as
the file to store the contents of this URL. A copy of the web page is created on the managed machine
that contains all of the text and HTML content of this webpage. You can search the contents of the file

on the managed machine in a subsequent command.

Another use is to download an executable file that is available from a web server, so that you don't
need to upload the file to the VSA server nor use the VSA's bandwidth to write the file down to each
agent. You can use a subsequent command to run the downloaded executable on the managed

machine.

Note: This command can download files from a LAN file source instead of the URL using Agent > Configure

Agents > LAN Cache. Files have to be larger than 4k bytes.

Example

getURL("http:\\www.kaseya.com", "c:\temp\test.htm", "Continue Immediately", "All
Operating Systems", "Halt on Fail")

getURLUsePatchFileSource()

Downloads a file from a given URL to a target folder and file for that agent. Uses the Patch

Management > File Source settings.

Operating systems supported: Windows

Example

getURLUsePatchFileSource("https://filezilla-project.org/download.php?type=server"
, "c:\temp", "No", "All Windows Operating Systems", "Halt on Fail")

http://www.kaseya.com/
http://www.kaseya.com/

Schedule / Create

22

getVariable()

Note: This command includes a 64-bit Registry Value parameter. See 64-Bit Commands (page 34).

Defines a new agent variable. When the procedure step executes, the system defines a new variable

and assigns it a value based on data fetched from the managed machine's agent.

Note: See Using Variables (page 35) for the types of variable values supported by the getVariable()

command.

Examples

Store a registry value.

getVariable("Registry Value", "HKEY_CURRENT_USER\KaseyaAgent-HKCUTest\TestREG_SZ",
"regSZ", "All Operating Systems", "Halt on Fail")

Store the contents of a file.

getVariable("File Content", "#systemdrive#\temp\degrag.txt", "defrag", "All
Operating Systems", "Halt on Fail")

Store a database view.

getVariable("SQL View Data", "vMachine/IpAddress", "ipaddress", "All Operating
Systems", "Halt on Fail")

Store a WMI value.

getVariable("WMI property", "root\cimv2:Win32_OperatingSystem.FreePhysicalMemory",
"freememory", "All Operating Systems", "Halt on Fail")

Store the agent install drive.

getVariable("Agent Install Drive (C:\)", " ", "agentDrv", "All Operating Systems",
"Halt on Fail"

Store the agent working directory path.

getVariable("Agent Working Directory Path", " ", "agentWorkDir", "All Operating
Systems", "Halt on Fail"

Prompt the user to enter a value when the procedure is scheduled.

getVariable("Prompt When Procedure is Scheduled", "URL:", "site", "All Operating
Systems", "Halt on Fail"

getVariableRandomNumber()

Generates a random number which can then be accessed as the variable #global:rand# in a

subsequent step.

Operating systems supported: Windows, OS X, Linux

Example

getVariableRandomNumber("All Operating Systems", "Halt on Fail")
sendMessage("#global:rand#", "Display now", "All Operating Systems", "Halt on Fail")

getVariableUniversalCreate()

Gets a variable that persists outside of the immediate procedure's execution. This can be useful for
passing a variable to another agent procedure using the scheduleProcedure() (page 26) step. You

store values in three variables: #global:universal1#, #global:universal2#, and

#global:universal3#. You can enter either string data or variables created in an earlier step.
Variables created using this step can only be read after using the getVariableUniversalRead() (page

23) step in any subsequent step. The three variables are specific to each agent machine. You can

optionally read the values from a different agent machine.

 Schedule / Create

 23

Operating systems supported: Windows, OS X, Linux

Example

getVariableUniversalCreate("red", "green", "blue", "All Operating Systems", "Halt on
Fail")
getVariableUniversalRead(" ", false, "All Operating Systems", "Halt on Fail")
sendMessage("#global:universal1#, #global:universal2#, #global:universal3#,
"Display now", "All Operating Systems", "Halt on Fail")

getVariableUniversalRead()

Reads up to three variables you have previously created using the getVariableUniversalCreate()

(page 22) step. These variables must be referred to as #global:universal1#, #global:universal2#,

and #global:universal3#. Please see the initial getVariableUniversalCreate() step for more detail. The
three variables are specific to each agent machine. You can optionally read the values from a different

agent machine.

Operating systems supported: Windows, OS X, Linux

Example

getVariableUniversalCreate("red", "green", "blue", "All Operating Systems", "Halt on
Fail")
getVariableUniversalRead(" ", false, "All Operating Systems", "Halt on Fail")
sendMessage("#global:universal1#, #global:universal2#, #global:universal3#,
"Display now", "All Operating Systems", "Halt on Fail")

giveCurrentUserAdminRights()

Adds the current user on the agent machine to the local administrator’s group on the agent machine,
either permanently or for a temporary period of time. This change does not take effect until the user
logs off. It is recommended you leverage the logoffCurrentUser() (page 25) step.

Operating systems supported: Windows

Example

giveCurrentUserAdminRights(10, false, "All Operating Systems", "Halt on Fail")
logoffCurrentUser(" ", "All Operating Systems", "Halt on Fail")

impersonateUser()

Enter a username, password, and domain for the agent to logon with. This command is used in a
procedure before an executeFile() (page 18), executeFileInDirectoryPath() (page 18) or
executeShellCommand() (page 19) that specifies the Execute as the logged on user option. Leave the
domain blank to log into an account on the local machine. Use impersonateUser() to run an agent
procedure using a credential specified by agent procedure. Use useCredential() to run an agent

procedure using a credential specified by managed machine.

Example

impersonateUser("administrator", "********", " ", "All Operating Systems", "Halt on
Fail")

installAptGetPackage()

Silently installs a package using the apt-get command in Linux. Install options include:

 Install

 Install package and recommended packages

 Install without recommended packages

 Install but do not upgrade

 Reinstall

Schedule / Create

24

 Download only

 No Download - uses local packages only

 Simulate

 Install with autofix

Operating systems supported: Linux

Example

installAptGetPackage("ruby", "Install package and recommended packages
(--install-recommends)", "All Operating Systems", "Halt on Fail")

installDebPackage()

Silently installs a Debian package on any Linux OS that supports .deb packages. Options include:

 Install/Upgrade

 Reinstall/Upgrade

 Install and Downgrade if package exists

 Use custom switches

Operating systems supported: Linux

Example

installDebPackage("apache2", "Install/Upgrade (-i -G -E)", " ", "All Operating
Systems", "Halt on Fail")

installDMG()

Silently installs a .DMG package in OS X. If the package is formatted as an Application, it is copied to

the /Applications folder. If the .DMG contains a .PKG installer within it, Kaseya attempts to install it.

Operating systems supported: OS X

Example

installDMG("/path/to/file.dmg", "Mac OS X", "Halt on Fail")

installMSI()

Installs an MSI file for Windows. Options can be selected to either run a quiet installation or to avoid
automatically restarting the computer after installation if it is requested. You must specify the location

of the MSI being installed.

Operating systems supported: Windows

Example

installMSI("c:\temp\7z938.msi", true, false, "All Operating Systems", "Halt on Fail")

installPKG()

Silently installs a .PKG package in OS X.

Operating systems supported: OS X

Example

installPKG("/path/to/pkg.pkg", "Mac OS X", "Halt on Fail")

installRPM()

Silently installs an RPM package on any Linux OS that supports installing RPMs. Install options

include:

 Install/Upgrade

 Install Only

 Schedule / Create

 25

 Reinstall

Operating systems supported: Linux

Example

installRPM("/path/to/awstats.i386.rpm", "Linux", "Halt on Fail")

logoffCurrentUser()

Automatically logs off the current user from the agent machine. An optional warning that the log-off

process is about to begin can be entered and displayed to the end-user.

Operating systems supported: Windows, OS X

Example

If isUserLoggedIn(" ")
 logoffCurrentUser(" ", "All Operating Systems", "Halt on Fail")

pauseProcedure()

Pause the procedure for N seconds. Use this command to give Windows time to complete an

asynchronous task, like starting or stopping a service.

Example

pauseProcedure(2, "All Operating Systems", "Halt on Fail")

reboot()

Unconditionally reboots the managed machine. To warn the user first, use the isYesFromUser() (page

12) command before this command. A isYesFromUser() command prompts the user before rebooting

their machine.

Example

reboot("All Operating Systems", "Halt on Fail")

rebootWithWarning()

Reboots a machine, displaying a warning message to the end-user before the reboot process occurs.

Operating systems supported: Windows, OS X

Example

rebootWithWarning("Your computer is rebooting in 10 minutes", 10, "All Operating
Systems", "Halt on Fail")

removeWindowsFileShare()

Removes file sharing for a folder on the Windows agent machine. Specify the name of the file share to
remove, not the local folder name. The Audit > Machine Summary > Hardware > Disk Shares tab lists
the shares on an agent machine as of the latest audit. You can create a file share using the
createWindowsFileShare() (page 16) command.

Operating systems supported: Windows

Example

removeWindowsFileShare("#sharename#", "All Operating Systems", "Halt on Fail")

renameLockedFile()

Renames a file, including any file that is currently in use. The file is renamed the next time the system
is rebooted. The specified filename is a complete file path name. Can be used to delete a file that is

currently in use if the "new file name" is left blank. The file is deleted when the system is rebooted.

Example

Schedule / Create

26

renameLockedFile("c:\temp\unlocked_file.txt", "c:\temp\locked_file.txt", "All
Operating Systems", "Halt on Fail")

renameLockedFileInDirectoryPath()

Renames a file that is currently in use that is located in the path returned from a
getDirectoryPathFromRegistry() (page 20) command. The file is renamed the next time the system is

rebooted. Can be used to delete a file that is currently in use if the "new file name" is left blank. The file

is deleted when the system is rebooted.

Example

getDirectoryPathFromRegistry("HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Dell\Client
SystemUpdate\InstallPath", "All Operating Systems", "Halt on Fail")
renameLockedFileInDirectoryPath("core.dll", "core.dll", "All Operating Systems",
"Halt on Fail")

scheduleProcedure()

Schedules a procedure to run on a specified machine. Optionally specifies the time to wait after
executing this step before running the procedure and the specified machine ID to run the procedure on.
If no machine is specified, then the procedure is run on the same machine running the agent

procedure. Enter the complete name of the machine, for example, machine.unnamed.org. This
command allows an agent procedure running on one machine to schedule the running of an agent
procedure on a second machine. You can use this command to run a system procedure. You can nest

procedures to 10 levels.

Example

scheduleProcedure("Reboot", "10", "ag-blue-732.root.unnamed", "All Operating
Systems", "Halt on Fail")

sendAlert()

This step command takes no parameters. Instead one or more getVariable() (page 22) steps—run prior
to the sendAlert() step—specify alert action variables that determine the actions triggered by the
sendAlert() step. All alert action variables are optional. If no alert action variables are defined, an alarm

will be created with a system default message. An alert action variable can be used to disable the
default alarm action. Alert action variables, if used, must use the specific names corresponding to their

actions:

 alertSubject - Subject for alert message. A system default message is used if you do not define
one in the agent procedure. See System Parameters below.

 alertBody - Body for alert message. A system default message is used if you do not define one
in the agent procedure. See System Parameters below.

 alertDisableAlarm - When a default alarm enabled, enter any value to disable.

 alertGenerateTicket - Enter any value to generate.

 alertScriptName - Valid agent procedure name to execute on current machine.

 alertEmailAddressList - Comma-separated email addresses. Required to send email.

 alertAdminNameList - Comma-separated list of VSA user names. Required to send messages
to the Info Center > Inbox.

 alertNotificationBarList - Comma-separated list of VSA user names. Required to send
messages to the Notification Bar.

 alertNotificationBarMasterAdmins - Enter any value to send notifications to the Notification
Bar for all master users.

System Parameters

You can override the default alertSubject and alertBody text sent by the sendAlert() command. If

 Schedule / Create

 27

you do you can embed the following system parameters in the alertSubject and alertBody
variables you create using getVariable() commands. Double angle brackets are required when
embedding them in text. You do not create these embedded system parameters using a getVariable()

command. They are always available.

 <<id>> - Machine display name on which the agent procedure is being executed.

 <<gr>> - Machine group name on which the agent procedure is being executed.

 <<at>> - Alert date/time (server time).

 <<ata>> - Alert date/time (agent time).

 <<apn>> - Agent procedure name being executed.

Custom Parameters

You can embed custom parameters in alertSubject and alertBody getVariable() commands. First,
create another variable using the getVariable() command. The value stored with this first variable can be

dynamic, determined when the agent procedure is run. Second, insert the name of this first

variable—surrounded by # and # brackets—into the text value specified by the alertSubject and

alertBody getVariable() commands. Examples include:

 #filename#

 #logentry#

 #registrykey#

 #registryvalue#

Specifying getVariable() Commands before sendAlert() in an Agent Procedure

For example, assume an agent procedure:

1. Creates a variable called runTimeVar using the getVariable() command. The values entered are:

 Constant Value

 Procedure terminated. Could not access 'File Server 123'.

 runTimeVar

 All Operating Systems

 Continue on Fail

2. Then a second getVariable() command is created in the same agent procedure. This second
getVariable() command specifies the body of a sendAlert() message. This body message embeds
both system and custom parameters. The values entered for this second getVariable() command

are:

 Constant Value

 This alert was generated by <<apn>> on machine <<id>> at <<ata>>:
#runTimeVar#.

 alertBody

 All Operating Systems

 Continue on Fail

3. Finally the sendAlert() command is run and the alert message is created.

Note: The sequence of parameter variables and alert action variables does not matter. But all of them
have to run before the sendAlert() command that makes use of them.

Example

Schedule / Create

28

getVariable("Constant Value", "Procedure terminated. Could not access 'File Server
123'.", "runtimeVar, "All Operating Systems", "Halt on Fail")
getVariable("Constant Value", "This alert was generated by <<apn>> on machine <<id>>
at <<ata>>: #runTimeVar#.", "alertBody", "All Operating Systems", "Halt on Fail")
sendAlert("All Operating Systems", "Halt on Fail")

sendEmail()

Sends an email to one or more recipients. Specifies the subject and body text of the email.

Example

sendEmail("yourhelpdesk@yourcompany.com", "Ping Test Failed", "#pingtest#", "All
Operating Systems", "Halt on Fail")

sendMessage()

Sends the entered message to a managed machine. An additional checkbox, if checked, sends the
message immediately. If unchecked, sends the message after the user clicks the flashing agent

system tray icon.

Example - Sample Procedures.Managed Services.Workstation Management.Send Message if Logged

On

If isUserLoggedIn(" ")
 getVariable("Prompt When Procedure is Scheduled", "Please enter a message to send",
"promptMsg", "All Operating Systems", "Halt on Fail")
 sendMessage("#promptMsg#", "Display now", "All Operating Systems", "Halt on Fail")

sendURL()

Displays the entered URL in a web browser window on the managed machine. An additional checkbox,
if checked, displays the URL immediately. If unchecked, the URL is displayed after the user clicks the

flashing agent system tray icon.

Example

If isUserLoggedIn(" ")
 getVariable("Prompt When Procedure is Scheduled", "Enter URL to display",
"promptURL", "All Operating Systems", "Halt on Fail")
 sendURL("#promptURL#", "Display now", "All Operating Systems", "Halt on Fail")

setRegistryValue() / set64BitRegistryValue()

Warning: Certain registry locations require 64-Bit Commands (page 34) for 64-bit Windows machines.

Writes data to the specified registry value. This function takes three parameters:

 Enter the full path to a registry key containing a value

 Specify the (Default) value for a registry key by adding a trailing backslash \. Otherwise

specify a name for an existing value or to create a new value. See the Name column in image
below.

Example of setting the (Default) value: HKEY_LOCAL_MACHINE\SOFTWARE\000Sample\

 The last single backslash in a string is used to delimit the registry key from the registry value.
To include backslashes as part of the value string, specify double slashes for each slash
character. For example, the string

HKEY_LOCAL_MACHINE\SOFTWARE\SomeKey\Value\\Name is interpreted as the key

HKEY_LOCAL_MACHINE\SOFTWARE\SomeKey with a value of Value\Name.

 Enter the data to write to the registry value

 Select the data type

 Schedule / Create

 29

 REG_SZ - String value.

 REG_BINARY - Binary data displayed in hexadecimal format.

 REG_DWORD - Binary data limited to 32 bits. Can be entered in hexadecimal or decimal format.

 REG_EXPAND_SZ - An "expandable" string value holding a variable. Example:

%SystemRoot%.

 REG_MULTI_SZ - A multiple string array. Used for entering more than one value, each one

separated by a \0 string. Use \\0 to include \0 within a string array value.

Note: On 64-bit machines the example image above requires set64BitRegistryValue() because of the
registry location (page 34).

Example

setRegistryValue("HKEY_CURRENT_USER\KaseyaAgent-HKCUTest\TestDirectoryPath",
"c:\temp", "REG_SZ", "All Operating Systems", "Halt on Fail")

sqlRead()

Returns a value from the database and stores it to a named variable by running a selected SQL "read"
statement. Global "read" statements are specified in the following location:
<Kaseya_Installation_Directory>\xml\Procedures\AgentProcSQL\0\SQLRead\<filename.x
ml> Filenames can be any name with an .xml extension so long as they are formatted correctly
internally. Multiple statements specified using one or more XML files display as a single combined
combo box list in the user interface. Each SQL statement in the XML file has a unique label, and only

the labels are shown in the combo box. If no SQL statements are defined, then *No Approved SQL*

displays in the combo box.

Partition-Specific Statements

Partition-specific folders can contain partition-specific SQL statements. For example:
<Kaseya_Installation_Directory>\xml\Procedures\AgentProcSQL\123456789\SQLRead\<fi
lename.xml>. Users can select and run all 0 folder SQL "read" statements and all SQL "read"

statements located in the partition path that matches the partition they are using.

Example Format

<?xml version="1.0" encoding="utf-8" ?>
<queryList>
 <queryDef label="Agent Machine Name" sql="SELECT machName FROM dbo.machNameTab WHERE agentGuid =
#vMachine.agentGuid#" />
</queryList>

Example

sqlRead("Agent Machine Name", "machname", "All Operating Systems", "Halt on Fail")
sendMessage("#machname#", "Display now", "All Operating Systems", "Halt on Fail")

sqlWrite()

Updates the database—such as updating the value in a column or inserting a row—by running a

Schedule / Create

30

selected SQL "write" statement. Global "write" statements are specified in the following location:
<Kaseya_Installation_Directory>\xml\Procedures\AgentProcSQL\0\SQLWrite\<filename.
xml> Filenames can be any name with an .xml extension so long as they are formatted correctly
internally. Multiple statements specified using one or more XML files display as a single combined
combo box list in the user interface. Each SQL statement in the XML file has a unique label, and only

the labels are shown in the combo box. If no SQL statements are defined, then *No Approved SQL*

displays in the combo box.

Partition-Specific Statements

Partition-specific folders can contain partition-specific SQL statements. For example:
<Kaseya_Installation_Directory>\xml\Procedures\AgentProcSQL\123456789\SQLWrite\<f
ilename.xml>. Users can select and run all 0 folder SQL "write" statements and all SQL "write"

statements located in the partition path that matches the partition they are using.

Example Format

<?xml version="1.0" encoding="utf-8" ?>
<queryList>
 <queryDef label="Update Table" sql="UPDATE table1 SET column2 = value2 WHERE column1 = value1" />
</queryList>

Example

sqlWrite("Update Table", "All Operating Systems", "Halt on Fail")

startWindowsService()

Runs a Start command for a Windows service, if it exists. See stopWindowsService() (page 30),

disableWindowsService() (page 17) and windowsServiceRecoverySettings() (page 32).

Note: Be sure to use the service name of the service, not the display name of the service. For example,

the display name of the service for Microsoft SQL Server is SQL Server (MSSQLSERVER), but the service
name of the service is MSSQLSERVER. For Windows machines, right click any service in the Services window
and click the Properties option to see the service name of that service.

Operating systems supported: Windows

Example

startWindowsService("btwdins", false, "All Operating Systems", "Halt on Fail")

stopWindowsService()

Runs a Stop command for a Windows service if it exists. See startWindowsService() (page 30),

disableWindowsService() (page 17) and windowsServiceRecoverySettings() (page 32).

Note: Be sure to use the service name of the service, not the display name of the service. For example,

the display name of the service for Microsoft SQL Server is SQL Server (MSSQLSERVER), but the service
name of the service is MSSQLSERVER. For Windows machines, right click any service in the Services window

and click the Properties option to see the service name of that service.

Operating systems supported: Windows

Example

stopWindowsService("btwdins", "All Operating Systems", "Halt on Fail")

transferFile()

Transfers a file from the agent machine running this step to another agent machine. Enter the fully

 Schedule / Create

 31

qualified machine ID of the target machine, for example, mymachine.root.kaseya. Then enter the full
path and file name of the source file you wish to send from the currently selected agent. Then enter the
full path and file name of the target file on the target machine. Similar to—but in the opposite direction
from—the writeFileFromAgent() (page 33) command.

Operating systems supported: Windows

Example

transferFile("ag-gold-w732.root.unnamed", "c:\temp\testfile.txt",
"c:\temp\testfile.txt", "All Operating Systems", "Halt on Fail")

uninstallbyProductGUID()

Silently uninstalls a product based on its MSI GUID. When entering the GUID, do not include the
surrounding brackets, but do include the hyphens. In many cases, you can use the Uninstall String

column on the Audit > Add/Remove page to identify the MSI GUID of an installed application.

Operating systems supported: Windows

Example

uninstallbyProductGUID("23170F69-40C1-2701-0938-000001000000", "Quiet with No
Restart", "All Operating Systems", "Halt on Fail")

unzipFile()

Extracts the contents of a specified zip file to a target folder, with an option to automatically overwrite

any previously existing target files or folders.

Operating systems supported: Windows, OS X, Linux

Example

unzipFile("c:\temp\changedXMLs.zip", "c:\schema_validation", false, "All Operating
Systems", "Halt on Fail")

updateSystemInfo()

Updates the selected System Info field with the specified value for the machine ID this procedure runs

on. The System Info fields you can update include all columns in vSystemInfo except agentGuid,

emailAddr, Machine_GroupID, machName, and groupName. vSystemInfo column information is used by
Audit > System Info, Agent > System Status, the Filter Aggregate Table in View Definitions, and the
Aggregate Table report.You can update a System Info field using any string value, including the value of

any previously defined agent procedure variable.

Note: Changes to system info data are reset the next time a System Information audit is run on an agent
machine.

Example

updateSystemInfo("Motherboard Serial Num", "12345678", "All Operating Systems",
"Halt on Fail")

useCredential()

Uses the agent credential set for the machine ID using Agent > Manage Agents. This command is used
in a procedure before an executeFile(), executeFileInDirectoryPath() or executeShellCommand() that specifies
the Execute as the logged on user option. Also used to access a network resource requiring a credential
from a machine when a user is not logged on. Use impersonateUser() to run an agent procedure using a
credential specified by agent procedure. Use useCredential() to run an agent procedure using a

credential specified by managed machine.

Schedule / Create

32

Note: A procedure execution error is logged if a Set Credential procedure command encounters an empty
username.

Note: Patch Management > Patch Alert can alert you—or run an agent procedure—if a machine ID's

credential is missing or invalid.

Example

useCredential("All Operating Systems", "Halt on Fail")

windowsServiceRecoverySettings()

Sets the Service Recovery Settings for any given service in Windows. Specify the name of the service
you wish to modify, then set both the first and second restart failure options and any subsequent restart
failure options. See startWindowsService() (page 30) stopWindowsService() (page 30), and

disableWindowsService() (page 17).

Note: Be sure to use the service name of the service, not the display name of the service. For example,
the display name of the service for Microsoft SQL Server is SQL Server (MSSQLSERVER), but the service
name of the service is MSSQLSERVER. For Windows machines, right click any service in the Services window

and click the Properties option to see the service name of that service.

Operating systems supported: Windows

Example

windowsServiceRecoverySettings("btwdins", "Restart the Service", "Restart the
Service", "All Operating Systems", "Halt on Fail")

writeDirectory()

Writes a selected directory, including subdirectories and files, from Manage Files Stored on Server

(page 38) to the full path directory name specified on the managed machine.

Example - Core.1 Windows Procedures.Desktops.Machine Control.Networking.Wireless.Enable

Wireless Networking Devices

writeDirectory("VSASharedFiles\3rd Party Utils\DevCon\", "#agenttemp#\DevCon",
"Windows 8.1", "Halt on Fail")

writeFile()

Writes a file selected from Manage Files Stored on Server (page 38) to the full path filename specified

on the managed machine. Enter a new filename if you want the file to be renamed.

Each time a procedure executes the writeFile() command, the agent checks to see if the file is already

there or not by hashing the file to verify integrity. If not, the file is written. If the file is already there, the
procedure moves to the next step. You can repeatedly run a procedure with writeFile() that sends a

large file to a managed machine and know that the VSA only downloads that file once.

Note: Environment variables are acceptable if they are set on a user's machine. For example, using the
path %windir%\notepad.exe would be equivalent to C:\windows\notepad.exe.

Note: This command can download files from a LAN file source instead of the VSA using Agent > Configure

Agents > LAN Cache. Files have to be larger than 4k bytes.

Example - Core.1 Windows Procedures.Desktops.Auditing.Share and NTFS.Audit Non-Admin Shares
(SRVCHECK)

writeDirectory("VSASharedFiles\3rd Party Utils\DevCon\ResKit\srvcheck.exe",
"#agenttemp#\srvcheck.exe", "Windows 8.1", "Halt on Fail")

 Schedule / Create

 33

writeFileFromAgent()

Transfers a file from another agent machine to the agent machine running this step. First enter the full
path and file name of the file you wish to send from the source machine. Then enter the full path and
the file name to be created on the target machine. Similar to—but in the opposite direction from—the
transferFile() (page 30) command.

Operating systems supported: Windows

Example

writeFileFromAgent("ag-gold-732.root.unnamed", "c:\temp\testfile.txt",
"c:\temp\testfile.txt", "Windows 7", "Halt on Fail")

writeFileInDirectoryPath()

Writes the specified filename to the path returned from a getDirectoryPathFromRegistry() (page 21)

command.

Example

getDirectorPathFromRegistry("HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Skype\Phone\
SkypeFolder", "All Windows Operating Systems", "Halt on Fail")
writeFileInDirectoryPath("desktop.ini", "desktop.ini", "All Windows Operating
Systems", "Halt on Fail")

writeProcedureLogEntry()

Writes the supplied string to the Agent Procedure Log for the machine ID executing this agent

procedure.

Example - Core.0 Common Procedures.Reboot/Shutdown/Logoff.Shutdown Computer

writeProcedureLogEntry("Agent is shutting down the computer.", "All Operating
Systems", "Halt on Fail")

writeTextToFile()

Writes text to a file on the agent machine, either by appending text to an existing file or by creating a
new file if none exists. You enter the text to write to the file, then enter the full path and file name on the
agent machine the text will be written to. You can optionally overwrite the entire file with the text you

have entered if the file already exists.

Operating systems supported: Windows, OS X, Linux

Example

writeTextToFile("#appsettings#", "c:\temp\appsettings.txt", false, "All Operating
Systems", Halt on Fail")

zipDirectory()

Compresses a directory and any subdirectories or files it contains into a zip file on the agent machine.
Enter the full path to be compressed, which can contain wildcards. Then enter the full path and file
name of the zip file to be created or updated. If the target zip file already exists, optionally check a box

to overwrite it.

Operating systems supported: Windows, OS X, Linux

Example

zipDirectory("c:\logs\data*", "#log_archive_dir#\archive.zip", true, "All Operating
Systems", "Halt on Fail")

zipFiles()

Compresses a single file or files into a zip file on the agent machine. Enter the full path of the file or files

Schedule / Create

34

to be compressed. Then enter the full path and filename of the zip file to be created or updated. If the

target zip already exists, optionally check a box to overwrite it.

Operating systems supported: Windows, OS X, Linux

Example

zipFiles("c:\logs\data*.log", "#log_archive_dir#\archive.zip", true, "All Operating Systems", "Halt on

Fail")

64-Bit Commands

Accessing 64-bit Registry Values

Five 64-bit registry commands and one 64-bit parameter are available in agent procedures. 64-bit
Windows isolates registry usage by 32-bit applications by providing a separate logical view of the
registry. The redirection to the separate logical view is enabled automatically and is transparent for the

following registry keys:

 HKEY_LOCAL_MACHINE\SOFTWARE

 HKEY_USERS*\SOFTWARE\Classes

 HKEY_USERS*_Classes

Since the Kaseya agent is a 32-bit application, you must use the following commands and parameter to

access the registry data that are stored in the above keys by the 64-bit applications.

IF Commands

 get64BitRegistryValue()

 has64bitRegistryKey()

STEP Commands

 delete64BitRegistryValue()

 delete64BitRegistryKey()

 set64BitRegistryValue()

 64-bit Registry Value parameter in the getVariable() command

Specifying 64-bit Paths in File Commands

The following commands...

 deleteFile()

 writeFile()

 executeFile()

 renameLockedFile()

 getFile()

 get-variable() File Content parameter

... can specify 64-bit directories using the following variables:

Use This Environment Variable To Target This Directory

%windir%\sysnative <drive>:\Windows\System32

%ProgramW6432% <drive>:\Program Files

%CommonProgramW6432% <drive>:\Program Files\Common Files

For compatibility reasons, Microsoft has placed 64-bit system files in the \Windows\system32 directory

and 32-bit system files in the \Windows\SysWOW64 directory. Similarly, 64-bit application files are

installed to the \Program Files and 32-bit application files are installed to the \Program Files (x86)

 Schedule / Create

 35

folder. Since the Kaseya agent is a 32-bit application, when a file path containing \Windows\system32

or \Program Files is specified on a 64-bit machine, the file access is automatically redirected to the

\Windows\SysWOW64 or \Program Files (x86) folders. To access files in \Windows\system32 and

\Program Files folders, use these environment variables when specifying parameters for these file

commands.

In Directory Path Commands

The getDirectoryPathFromRegistry() command—and any subsequent ...In Directory Path

command—cannot be used to access files in the \Program Files and \Windows\System32
directories on a target 64-bit machine. These commands can still access 32-bit or 64-bit files in any

other folder.

Identifying 64-bit Machines

64-bit machine IDs typically display a x64 in the Version column of audit pages.

Using Variables
Use variables to store values that can be referenced in multiple procedure steps. Variables are passed
automatically to nested procedures.

 Three Methods for Creating Variables:

 Procedure Variables - Use the getVariable() command within a procedure to create a new

variable name without any special characters. Example: VariableName. In subsequent
steps, including steps in nested procedures, reference the variable by bracketing the

variable name with the # character. Example: #VariableName#.

Note: Procedures variables cannot be referenced outside of the procedure or nested
procedures that use them except for GLOBAL variables. A procedure variable is only visible

to the section of the procedure it was created in and any child procedures. Once a procedure
leaves the THEN clause or ELSE clause the variable was created in, the variable is out of

scope and no longer valid. Use GLOBAL Variables, described below, to maintain visibility of a

variable after leaving the THEN clause or ELSE clause the variable was created in.

 Managed Variables - Use the Variable Manager (page 37) to define variables that can be used

repeatedly in different procedures. You can maintain multiple values for each managed
variable, with each value applied to one or more group IDs. Managed variables cannot be
re-assigned new values within a procedure. Within a procedure, reference a managed

variable by bracketing the variable name with the < and > character. Example:

<VariableName>.

 GLOBAL Variables - Non-GLOBAL variables cannot return a changed value of a procedure

variable defined by its parent procedure. Non-GLOBAL variables initialized in the child
procedure also cannot be passed back to the parent. Variables named with the prefix

GLOBAL: (case-insensitive followed by a colon) can pass changed values from the child to
the parent, whether the variable is initialized in the parent or the child procedure.
Subsequent child procedures can makes use of any GLOBAL variable initialized in any
earlier step, regardless of whether that global variable is initialized in a parent procedure or

another child procedure.

 Variable Names - Variable names cannot include the following characters: , % ' " / \ : * ? < >
| and the space character.

 Where Used - Once variables are created you can include them, in their bracketed format, in any
text entry field displayed by an IF-ELSE-STEP dialog box.

 Case Sensitivity - Variable names are case sensitive.

Schedule / Create

36

 Reserved Characters - Because the <, > and # characters are used to identify variable names, these
characters must be entered twice as regular text in a command line. For example the following

command c:\dir >> filelist.txt is interpreted at procedure runtime as c:\dir >
filelist.txt.

 Types of Variable Values Possible - The following are the types of variable values typically obtained
by using the getVariable() parameter.

 Registry Value and 64-Bit Registry Value - See 64-Bit Commands (page 34) - Data from the

specified registry value on the managed machine. The last single backslash in a string is
used to delimit the registry key from the registry value. To include backslashes as part of the
value string, specify double slashes for each slash character. For example, the string

HKEY_LOCAL_MACHINE\SOFTWARE\SomeKey\Value\\Name is interpreted as the key

HKEY_LOCAL_MACHINE\SOFTWARE\SomeKey with a value of Value\Name.

 File Content - Data from a specified file on the managed machine. See 64-Bit Commands

(page 34).

 Constant Value - Specified constant as typed in the procedure editor.

 Agent Install Directory Path - Directory in which the agent is installed on the managed machine.

 Agent Install Drive - Drive in which the agent is installed on the managed machine, such as

c:\.

 Agent Working Directory Path - Working directory on the managed machine as specified using

Agent > Manage Agents.

Warning: Do not delete files and folders in the working directory. The agent uses the data stored in the

working directory to perform various tasks.

 User Temporary Directory Path - The temporary directory for the user currently logged on the

managed machine. This path is the expansion of the %TEMP% environment variable for the
currently logged on user. If no user is logged on, it is the default Windows temporary

directory.

 Machine.Group ID - Machine ID of the agent executing the procedure.

 File Version Number - The software version number of the specified file on the managed

machine. For example, an exe or dll file often contain the version number of their release.

 File Size - Size in bytes of the specified file on the managed machine.

 File Last Modified Date - The last modified date and time in universal time, coordinated (UTC)

of the specified file on the managed machine in the format of yyyy/mm/dd hh:mm:ss.

 Automatic SQL View Data Variables - SQL view parameters are available as automatically
declared procedure variables. Automatic variables enable you to skip using the GetVariable

command before making use of the variable in a step. Use the format

#SqlViewName.ColumnName# in a procedure to return the value of a dbo.SqlView.Column for
the agent running the agent procedure. See System > Database Views for a list of the SQL

views and columns that are available.

Note: SQL View Data - This older method of returning a database view value is only necessary if
you are trying to return a value from a different machine than the machine running the agent
procedure. Use the GetVariable command with the SQL View Data option to create a new

procedure variable and set it to the value of a dbo.SqlView.Column value. Use the format

SqlViewName/ColumnName/mach.groupID or SqlViewName/ColumnName. If the optional

machine ID is omitted, then the value for the agent executing the procedure is retrieved. If

ColumnName contains a space, surround it with square brackets. Example:
vSystemInfo/[Product Name]. See System > Database Views for a list of the SQL views and

columns that are available.

 Schedule / Create

 37

 Automatic Administrator Variables - Three administrator variables are declared automatically.

These automatic administrator variables allow agent procedures to access values not

present from an SQL view.

 #adminDefaults.adminEmail# - Email address of the VSA user who scheduled the

agent procedure.

 #adminDefaults.adminName# - Name of the VSA user who scheduled the agent

procedure.

 #scriptIdTab.scriptName# - Name of the agent procedure.

 WMI Property - A WMI namespace, class, and property. The format of the specified WMI

property is NameSpace:Class.Property. For example,

root\cimv2:Win32_OperatingSystem.FreePhysicalMemory. Specify an instance using

the following syntax: NameSpace:Class[N].Property where [N] is the instance number.

For example, root\cimv2:Win32_OnboardDevice[3].Description. The first instance

may be specified with or without specifying the [1] instance number.

 Expression Value - Specify an expression that consists of procedure variables and six

mathematical operators +, -, *, /, (, and) that are evaluated and assigned to a new

procedure variable. For example, ((#variable1# + #variable2#) + 17.4) /
(#variable3# * 4). The procedure variables must contain numeric values.

 Prompt when procedure is scheduled - Displays a message prompt to enter a value when an

agent procedure is run. The value is stored in the variable name you specify. Specify the
prompt text and variable name. For example, each time this procedure is run, a VSA user

could enter a different machine directory.

 Alert Variables - An agent procedure can be assigned to run when an alert is triggered. In most

cases the alert passes predefined variables to the agent procedure. These alert variables are
documented by alert topic. See Alerts - New Agent Installed for an example.

 Windows Environment Variables - You can reference Windows environmental variables within the
executeFile(), Execute File in Path and executeShellCommand() only. Enclose the whole command in

quotes, because the environmental variable may contain spaces which might affect execution.
For other agent procedure commands, use getVariable() to get the registry key containing the

environmental variables, located under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Environment.

Variable Manager
Use the Variable Manager to define variables that can be used repeatedly in different agent procedures.

You can maintain multiple values for each managed variable, with each value applied to one or more
group IDs. Managed variables cannot be re-assigned new values within a procedure. Within a

procedure, reference a managed variable by bracketing the variable name with the < and > character.

Example: <VariableName>. See Using Variables (page 35).

Using managed variables, managed machines can run agent procedures that access locally available

resources based on the group ID or subgroup ID.

Note: Using System > Naming Policy, this benefit can be applied automatically by IP address even to a
highly mobile workforce that travels routinely between different enterprise locations.

Select Variable

Select a variable name from the drop-down list or select <New Variable> to create a new variable.

Variable names are case sensitive and cannot include the following characters: , % ' " / \ : * ? <
> | and the space character.

Schedule / Create

38

Rename/Create Variable

Enter a new name for the new variable you are creating or for an existing variable you are renaming.

Select the delete icon to delete the entire variable from all groups.

Public

Selecting the Public radio button allows the variable to be used by all users. However, only master role

users can create and edit shared variables.

Private

Selecting the Private radio button allows the variable to be used only by the user who created it.

Apply

Enter the initial value for a variable. Then select one or more Group IDs and click Apply. Empty values

are not allowed.

Remove

Select one or more group IDs, then click Delete to remove the value for this variable from the group IDs

it is assigned to.

Select All/Unselect All

Click the Select All link to check all rows on the page. Click the Unselect All link to uncheck all rows on the

page.

Group ID

Displays all group IDs the logged in user is authorized to administer.

Value

Lists the value of the variable applied to the group ID.

Manage Files Stored on Server
Agent Procedures > Manage Procedures > Schedule / Create > Manage Files

Use the Manage Files Stored on Server popup window to upload a file and store it on the Kaseya Server.

You can also list, display and delete files already stored on the Kaseya Server. Agent procedures can
distribute these files to managed machines using the writeFile() or writeFileInDirectoryPath() commands.

Note: This store of files is not machine-specific. getFile() (page 47) uploads and stores machine-specific

files on the server.

To upload a file:

 Click Private files or Shared files to select the folder used to store uploaded files. Files stored in the
Private files folder are not visible to other users.

 Click Browse... to locate files to upload. Then click Upload to upload the file to the Kaseya Server.

To delete a file stored on the Kaseya Server:

 Click Private files or Shared files to select the folder used to store uploaded files.

 Click the delete icon next to a file name to remove the file from the Kaseya Server.

 Schedule / Create

 39

Note: An alternate method of uploading files is to copy them directly to the managed files directory on
the IIS server. This directory is normally located in the C:\Kaseya\WebPages\ManagedFiles directory.

In that directory are several sub-directories. Put private files into the directory named for that user.

Put shared files into the VSASharedFiles directory. Any files located in this directory will automatically

update what is available in the Manage Files Stored on Server user interface at the next user logon.

Folder Rights

Private Folders

Objects you create—such as reports, procedures, or monitor sets—are initially saved in a folder with
your user name underneath a Private cabinet. This means only you, the creator of the objects in that

folder, can view those objects, edit them, run them, delete them or rename them.

To share a private object with others you first have to drag and drop it into a folder underneath the
Shared cabinet.

Note: A master role user can check the Show shared and private folder contents from all users checkbox in
System > Preferences to see all shared and private folders. For Private folders only, checking this box

provides the master role user with all access rights, equivalent to an owner.

Shared Folders

The following Share Folder guidelines apply to folders underneath a Shared cabinet:

 All child folders inherit rights from their parent folder unless the child's folders are explicitly set.

 If you have rights to delete a folder, deleting that folder deletes all objects and subfolders as well,
regardless of share rights assigned to those subfolders.

Note: Scopes have nothing to do with the visibility of folders and objects in a folder tree. Scopes

limit what your folder objects can work with. For example, you can be shared folders containing

reports, procedures or monitor sets but you will only be able to use these objects on machine

groups within your scope.

 To set share rights to a folder, select the folder, then click the Share Folder button to display the
Share Folder dialog.

 You can share specific rights to a folder with any individual user or user role you have
visibility of. You have visibility of:

 Any user roles you are a member of, whether you are currently using that user role or

not.

 Any individual users that are members of your current scope.

 Adding a user or user role to the Shared Pane allows that user to run any object in that folder.

No additional rights have to be assigned to the user or user role to run the object.

 Checking any additional rights—such as Edit, Create, Delete, Rename, or Share—when you add

the user or user role provides that user or user role with those additional rights. You have to

remove the user or user role and re-add them to make changes to their additional rights.

 Share means the user or user role can assign share rights for a selected folder using the
same Share Folder dialog box you used to assign them share rights.

Distribution

40

Distribution
Agent Procedures > Manage Procedures > Distribution

The Distribution page spreads network traffic and server loading by executing agent procedures evenly

throughout the day or a specific block of time in a day. Applies to agent procedures currently scheduled
to run on a recurring basis only.

Note: Recurring procedures listed here include function-specific procedures that are not visible as agent
procedures in the Schedule / Create (page 1) folder tree, such as procedures created using a Patch

Management wizard.

Procedures can cause excessive network loading by pushing large files between the Kaseya Server
and agent. Performing these operations with hundreds of agents simultaneously may cause

unacceptable network loading levels.

Procedure Histograms

The system plots a histogram for each procedure currently scheduled to run on a recurring basis.
Setting the histogram period to match the recurring interval of the procedure counts how many
machines execute the procedure in a specific time interval. Peaks in the histogram visually highlight
areas where a lot of machines are trying to execute the procedure at the same time. Click a peak to
display a popup window listing all machine IDs contributing to that peak load. Use the controls,
described below, to reschedule the procedure such that the network loading is spread evenly over
time. Only machine IDs currently matching the Machine ID / Group ID filter are counted in the histogram.

Reschedule selected procedure evenly through the histogram period

Pick this radio control to reschedule selected procedures running on all machines IDs currently
matching the Machine ID / Group ID filter. Procedure execution start times are staggered evenly across

the entire histogram period.

Reschedule selected procedure evenly between <start time> and <end time>

Pick this radio control to reschedule selected procedures running on all machines IDs currently
matching the Machine ID / Group ID filter. Procedure execution start times are staggered evenly,

beginning with the start time and ending with the end time.

Run recurring every <N> <periods>

This task is always performed as a recurring task. Enter the number of times to run this task each time

period.

Skip if Machine Offline

Check to perform this task only at the scheduled time, within a 15 minute window. If the machine is
offline, skip and run the next scheduled period and time. Uncheck to perform this task as soon as the

machine connects after the scheduled time.

Distribute

Click the Distribute button to schedule selected procedures, using the schedule parameters you've

defined.

Note: The procedure recurring interval is replaced with the histogram period.

Select Histogram Period

Selects the schedule time period to display histograms.

 Agent Procedure Status

 41

Histogram Plots

Each recurring procedure displays a histogram of all the machine IDs that are scheduled to run that
procedure within the selected histogram period. Only machine IDs currently matching the Machine ID /
Group ID filter are counted in the histogram.

Above the histogram is a:

 Procedure name - name of the procedure. Check the box next to the procedure name to select this

procedure for distribution.

 Peak - the greatest number of machines executing the procedure at the same time.

 Total - total number of machines executing the procedure.

Agent Procedure Status
Agent Procedures > Manage Procedures > Agent Procedure Status

 Similar information is displayed in the Pending Procedures tab of the Live Connect and Machine Summary pages.

The Agent Procedure Status page displays the status of agent procedures for a selected machine ID. The

list of machine IDs you can select is based on the Machine ID / Group ID filter. Users can, at a glance,
find out what time a agent procedure was executed and whether it was successfully executed. Use the
Agent Procedure Status page to identify the list of recurring agent procedures assigned to each agent.

See Agent Procedures > Schedule / Create (page 1) for more information about agent procedures.

Check-in status

These icons indicate the agent check-in status of each managed machine. Hovering the cursor over a

check-in icon displays the agent Quick View window.

 Online but waiting for first audit to complete

 Agent online

 Agent online and user currently logged on.

 Agent online and user currently logged on, but user not active for 10 minutes

 Agent is currently offline

 Agent has never checked in

 Agent is online but remote control has been disabled

 The agent has been suspended

 An agent icon adorned with a red clock badge is a temporary agent.

Machine.Group ID

The list of Machine.Group IDs displayed is based on the Machine ID / Group ID filter and the machine

groups the user is authorized to see using System > User Security > Scopes.

Procedure Name

The name of the agent procedure.

Time

The date and time the agent procedure was last executed.

Status

Displays the results of the executed agent procedure. Overdue date/time stamps display as red text

with yellow highlight. Recurring agent procedures display as red text.

Admin

Displays the VSA user who scheduled the agent procedure.

Pending Approvals

42

Pending Approvals
Agent Procedures > Manage Procedures > Pending Approvals

The Pending Approvals page approves signed agent procedures, enabling them to be run using the

Schedule / Create (page 1) page, or selected and run elsewhere throughout the VSA.

Enabling/Disabling Signing and Approval

The signing and approval of user saved agent procedures is enabled and disabled using the System >
Default Settings > Enable Agent Procedure Signing option. Defaults to disabled.

Two Factor Authentication

A user can approve his or her signed agent procedure using two factor authentication. See AuthAnvil >
Agent Procedure Approval (http://help.kaseya.com/webhelp/EN/AAPSFK/9040000/index.asp#31557.htm).

Signed Agent Procedures

A signed agent procedure helps detect unauthorized changes to an agent procedure. Unsigned agent

procedures cannot be run anywhere in the VSA.

 An agent procedure is digitally signed when it is saved by any user using the agent procedure
editor.

 Signed agent procedures created by standard users require approval using the Pending Approvals

page.

 Only users who are using a role that provides access rights to the Pending Approvals page can

manually approve pending, signed agent procedures.

 An agent procedure signed by a standard user can only be approved by a second user.

 Agent procedures imported by standard users are signed but not yet approved.

Automatically Signed and Approved Agent Procedures

Agent procedures are automatically signed and approved when they are:

 Created by master role users.

 Imported by master role users.

 In the database when the VSA is upgraded from 6.5 to 7.0 or R8.

Approval History

When a procedure is selected in the folder tree, clicking the Approval History (page 3) tab in the right

hand pane displays a list of dates and users that approved the procedure.

Actions

 Approve Procedure - Approves selected signed agent procedures.

 Refresh - Refreshes the page.

Table Columns

 Script Name - The name of the agent procedure.

 Modified By - The user who last edited the agent procedure.

 Date Modified - The date/time the agent procedure was last modified.

 Location - The location of the agent procedure in the agent procedure folder tree.

http://help.kaseya.com/webhelp/EN/AAPSFK/9040000/index.asp#31557.htm

 Patch Deploy

 43

Patch Deploy
Agent Procedures > Installer Wizards > Patch Deploy

The Patch Deploy wizard is a tool that creates an agent procedure to distribute and apply Microsoft

patches. The wizard walks you through a step by step process resulting in an agent procedure you can

schedule, to deploy a patch to any managed machine.

Microsoft releases many hot fixes as patches for very specific issues that are not included in the
Microsoft Update Catalog or in the Office Detection Tool, the two patch data sources the Patch
Management module uses to manage patch updates. Patch Deploy enables customers to create a patch

installation procedure for these hot fixes, via this wizard, that can be used to schedule the installation

on any desired machine.

See Methods of Updating Patches, Configuring Patch Management, Patch Processing, Superseded

Patches, Update Classification and Patch Failure for a general description of patch management.

Step 1: Enter 6-digit knowledge base article number.

Microsoft publishes a vast assortment of information about its operating system in the Microsoft
Knowledge Base. Each article in the Knowledge Base is identified with a 6-digit Q number (e.g.

Q324096.) All Microsoft patches have an associated knowledge base article number.

Note: Entering the article number is optional. Leave it blank if you do not know it.

Step 2: Select the operating system type.

Sometimes patches are specific to a certain operating system. If the patch you are trying to deploy
applies to a specific OS only, then select the appropriate operating system from the drop-down control.
When the wizard creates the patch deploy procedure, it restricts execution of the procedure to only
those machines with the selected OS. This prevents inadvertent application of operating system

patches to the wrong OS.

Step 3: Download the patch.

This step is just a reminder to fetch the patch from Microsoft. Typically there is a link to the patch on the

knowledge base article describing the patch.

Step 4: How do you want to deploy the patch?

The Patch Deploy wizard asks you in step 4 if you want to Send the patch from the KServer to the remote
machine and execute it locally or Execute the patch from a file share on the same LAN as the remote machine.

Pushing the patch down to each machine from the VSA may be bandwidth intensive. If you are
patching multiple machines on a LAN no internet bandwidth is used to push out the patch. Each

machine on the LAN can execute the patch file directly from a common file share.

Step 5: Select the patch file or Specify the UNC path to the patch stored on the same LAN as the

remote machine.

If Send the patch from the KServer to the remote machine and execute it locally was selected, then the patch

must be on the VSA server. Select the file from the drop-down list.

Note: If the patch file does not appear in the list then it is not on the Kaseya Server. Click the Back button

and upload the file to the Kaseya Server by clicking the first here link.

If Execute the patch from a file share on the same LAN as the remote machine was selected, then the patch

must be on the remote file share prior to running the patch deploy procedure. The specified path to the

file must be in UNC format such as \\computername\dir\.

Application Deploy

44

Note: If the file is not already on the remote file share, you can put it their via FTP. Click the Back button
and then the second here link takes you to FTP.

Step 6: Specify the command line parameters needed to execute this patch silently.

To deploy a patch silently you need to add the appropriate command line switches used when
executing the patch. Each knowledge base article lists the parameters for silent install. Typical switch

settings are /q /m /z.

Note: Command line parameters are optional. Leave it blank if you do not know it.

Step 7: Name the procedure.

Enter a name for the new agent procedure you can run to deploy the patch.

Step 8: Reboot the machine after applying the patch.

Check this box to automatically reboot the managed machine after applying the patch. The default

setting is to not reboot.

Click the Create button.

A new agent procedure is created. Use Agent Procedure > Schedule / Create (page 1) to display the

new agent procedure in the folder tree, under your private folder user name. You can run this new
agent procedure to deploy the patch to any managed machine.

Application Deploy
Agent Procedures > Installer Wizards > Application Deploy

The Application Deploy page is a wizard tool that creates an agent procedure to distribute vendor

installation packages, typically setup.exe. The wizard walks you through a step by step process

resulting in an agent procedure you can schedule, to deploy an application to any managed machine.

Deploying Software Vendor's Install Packages

Most vendors provide either a single file when downloaded from the web or set of files when distributed

on a CD. Executing the installer file, typically named setup.exe or abc.msi, installs the vendor's

application on any operating system.

The Application Deploy wizard takes you though an interview process to determine the type of installer

and automatically generates a procedure to deploy install vendor packages.

The VSA provides a small utility to automatically identify all supported installer types. Download and

run kInstId.exe to automatically identify the installer type.

Note: See Creating Silent Installs (page 45) to ensure vendor installation packages don't pause for user

input during installation.

Step 1: How do you want to deploy the application?

The wizard generated procedure tells the managed machine where to get the application installation
file to execute. The Application Deploy wizard asks you in step 1 if you want to Send the installer from the
VSA server to the remote machine and execute it locally or Execute the installer from a file share on the same LAN

as the remote machine.

Pushing the application installation file to each machine from the VSA may be bandwidth intensive. If
you are installing to multiple machines on a LAN no internet bandwidth is used to push out the
application installation file. Each machine on the LAN can execute the application installation file

directly from a common file share.

 Application Deploy

 45

Step 2: Select the application install file or Specify the UNC path to the installer stored on the

same LAN as the remote machine.

If Send the installer from the VSA server to the remote machine and execute it locally was selected, then the

installer file must be on the VSA server. Select the file from the drop-down list.

Note: If the installer file does not appear in the list then it is not on the VSA server. Click the here link to
upload the file to the server.

If Execute the installer from a file share on the same LAN as the remote machine was selected, then the installer

file must be on the remote file share prior to running the application deploy procedure. The specified

path to the file must be in UNC format such as \\computername\dir\. When specifying a UNC path to

a share accessed by an agent machine—for example \\machinename\share—ensure the share's
permissions allow read/write access using the agent credential

(http://help.kaseya.com/webhelp/EN/VSA/9040000/index.asp#3492.htm) specified for that agent machine in Agent

> Manage Agents.

Note: If the file is not already on the remote file share, you can put it there via FTP. Click the here link to

start FTP.

Step 3: What kind of installer is this?

The wizard need to know what kind of installer was used by your software vendor to create the install
package. The VSA provides a small utility to automatically identify all supported installer types.

Download and run kInstId.exe to automatically identify the installer type. Supported installer types

are:

 Windows Installer (MSI files)

 Wise Installer

 Installshield - Package For The Web

 Installshield - Multiple Files

 Other

Step 4: Name the agent procedure.

Enter a name for the new agent procedure you can run to install the application.

Step 5: Reboot the machine after installing the application.

Check this box to automatically reboot the managed machine after running the install. The default

setting is to not reboot.

Click the Create button.

A new agent procedure is created. Use Agent Procedure > Schedule / Create (page 1) to display the

new agent procedure in the folder tree, under your private folder user name. You can run this new

agent procedure to install the application to any managed machine.

Creating Silent Installs
Most vendors provide either a single file, when downloaded from the web, or set of files, when
distributed on a CD. Executing the installer file, typically named setup.exe, installs the vendor's
application on any operating system. Vendors typically use one of three applications to create install
packages: InstallShield, Windows Installer, or Wise Installer. Each of these applications provides a method

for creating silent installs. When automating the installation of vendor install packages, you'll want to

ensure the installation package does not pause for user input during installation.

http://help.kaseya.com/webhelp/EN/VSA/9040000/index.asp#3492.htm

Application Deploy

46

Silent Installs with InstallShield

InstallShield has a record mode that captures answers to all dialog boxes in the installation procedure.

InstallShield requires the recorded response iis file to be on the managed machine during the
installation. To deploy, the agent procedure must use the writeFile() command to send both the

setup.exe and record.iis files from VSA server to the managed machine and then use

executeFile() (page 18) to run setup.exe with the options /s /f"<path>\record.iis". Refer to your
InstallShield help guide for more information regarding the silent installation capability with a recorded
response file.

Create a custom install package by following these steps:

1. Verify the install package was made with InstallShield.

a. Launch the install package.

b. Confirm InstallShield Wizard displays at the end of the window title bar.

2. Launch the install package in record mode from a command prompt.

a. If the install package is a single file - Run setup.exe /a /r /f1c:\temp\record.iss.

Setup.exe is the name of the install package. c:\temp\record.iss is the full path

filename to save the recorded output.

b. If the Install package is a set of files - Run setup.exe /r /f1c:\temp\record.iss.

Setup.exe is the name of the install package. c:\temp\record.iss is the full path

filename to save the recorded output.

3. Deploy the install package with the recorded dialog box responses. Use the writeFile() agent

procedure command to copy both the vendor's install package and record.iss file to each

managed machine or to a file server accessible by each managed machine.

4. Execute the install package with silent mode command line parameters using the executeFile()

procedure command.

a. If the install package is a single file - Run setup.exe /s /a /s /f1c:\temp\record.iss.

Setup.exe is the name of the install package. c:\temp\record.iss is the full path

filename location of the recorded settings.

b. If the Install package is a set of files - Run setup.exe /s /f1c:\temp\record.iss.

Setup.exe is the name of the install package. c:\temp\record.iss is the full path

filename location of the recorded settings.

Silent Installs with Windows Installer

Windows Installer does not have a record mode. As such it can only silently install the Typical install

configuration. To silently install a Windows Installer package write a procedure to perform the

following:

1. Use the writeFile() agent procedure command to copy the vendor's install package to each

managed machine or to a file server accessible by each managed machine.

2. Run the install package with the /q parameter using the executeFile() agent procedure command.

Silent Installs with Wise Installer

Wise Installer does not have a record mode. As such it can only silently install the Typical install

configuration. To silently install a Wise Installer package write a procedure to perform the following:

1. Use the writeFile() agent procedure command to copy the vendor's install package to each

managed machine or to a file server accessible by each managed machine.

2. Run the install package with the /s parameter using the executeFile() agent procedure command.

 Get File

 47

Get File
Agent Procedures > File Transfer > Get File

The Get File page accesses files previously uploaded from a managed machine. Files can be uploaded
to a machine-specific directory on the Kaseya Server using the getFile() or getFileInDirectoryPath()

commands. Clicking the machine ID displays all uploaded files for that machine ID. Click the link

underneath a file to display the file or run it.

Note: The files stored on the Kaseya Server using the getFile() command are machine-specific. Use Manage

Files Stored on Server (page 38) to access files stored on the Kaseya Server that are not

machine-specific.

 Each file is displayed as a link. Click any filename to access that file.

 Remove files by clicking the delete icon next to the file.

Example 1: Checking Large Number of Managed Machines Simultaneously

Get File is designed to support automated checks on a large number of managed machines

simultaneously.

Note: If all you want to do is get a file from a managed machine as a one-time event then Remote Control
> FTP is the simplest way.

Use Get File in conjunction with an agent procedure to perform some automated task on a set of

managed machines. For example, if you have a utility that reads out some information unique to your

client computers you can write a procedure to do the following:

1. Send the utility to the managed machine using either the writeFile() procedure command or the

Distribute File page.

2. Execute the utility using either the executeShellCommand() or executeFile() agent procedure

command and pipe the output to a text file, such as results.txt.

3. Upload the file to the Kaseya Server using the getFile() command.

Example 2: Comparing Versions of a File

As an option in the getFile() agent procedure command, existing copies of uploaded files can be

renamed with a .bak extension prior to the next upload of the file. This allows you to examine both the
latest version of the file and the previous version. For example, use the IF-ELSE-STEP agent
procedure editor to create a simple getFile() agent procedure.

The first time the getFile() agent procedure command executes on a managed machine the agent sends

c:\temp\info.txt to the Kaseya Server and the Kaseya Server stores it as news\info.txt. The
second time getFile() agent procedure executes, the Kaseya Server renames the original copy of

news\info.txt to news\info.txt.bak then uploads a fresh copy and saves it as news\info.txt.

Also as an option, an email alert can be sent when a change in the uploaded file has been detected,
compared to the last time the same file was uploaded. The getFile() command must have either the
Overwrite existing file and send alert if file changed setting or the Save existing version, get file, and send alert if

file changed setting selected.

Example 3: Get File Changes Alerts

To perform continuous health checks on managed machines, run the agent procedure on a recurring
schedule and activate a Get File Changes alert using Monitor > Alerts - Get Files. The VSA instantly

notifies you of any changes to the results.

Troubleshooting Patch Installation Failures

When patch scan processing reports patch installations have failed, a KBxxxxxx.log (if available) and

Distribute File

48

the WindowsUpdate.log are uploaded to the Kaseya Server. Additionally, for those patches that

required an "Internet based install", a ptchdlin.xml file will be uploaded to the Kaseya Server. These
files can be reviewed using Agent Procedures > getFile() (page 47) for a specific machine and can help

you troubleshoot patch installation failures. Info Center > Reporting > Reports > Logs > Agent
Procedure Log contains entries indicating these log files have been uploaded to the Kaseya Server for

each machine.

Distribute File
Agent Procedures > File Transfer > Distribute File

The Distribute File function sends files stored on your VSA server to managed machines. It is ideal for
mass distribution of configuration files, such as virus foot prints, or maintaining the latest version of
executables on all machines. The VSA checks the integrity of the file every full check-in. If the file is
ever deleted, corrupted, or an updated version is available on the VSA, the VSA sends down a new
copy prior to any procedure execution. Use it in conjunction with recurring procedures to run batch

commands on managed machines.

Note: The procedure command writeFile() performs the same action as Distribute File. Each time a

procedure executes the writeFile() command, the agent checks to see if the file is already there or

not. If not, the file is written. writeFile() is better than Distribute File for sending executable files you
plan to run on managed machines using agent procedures.

Select server file

Select a file to distribute to managed machines. These are the same set of files managed by clicking
the Manage Files... link on this page.

Note: The only files listed are your own private managed files or shared managed files. If another user

chooses to distribute a private file you can not see it.

Specify full path and filename to store file on remote machine

Enter the path and filename to store this file on selected machine IDs.

Manage Files...

Click the Manage Files (page 38)... link to display the Manage Files Stored on Server popup window. Use

this window to add, update, or remove files stored on the Kaseya Server. This same window displays
when you click the Managed Files button using Schedule / Create (page 1). Private files are listed with

(Priv) in front of the filename.

Distribute

Click the Distribute button to start distribution management of the file selected in Select server file and
write it to the location specified in Specify full path and filename to store file on remote machine. This effects

all checked machine IDs.

Clear

Click the Clear button to remove the distribution of the file selected in Select server file from all checked

machine IDs.

Warning: Clear and Clear All do not delete the file from either managed machines or the Kaseya Server.

These functions simply stop the integrity check and update process from occurring at each full check-in.

 Application Logging

 49

Clear All

Clear All removes all file distributions from all checked managed machines.

Select All/Unselect All

Click the Select All link to check all rows on the page. Click the Unselect All link to uncheck all rows on the

page.

Check-in status

These icons indicate the agent check-in status of each managed machine. Hovering the cursor over a

check-in icon displays the agent Quick View window.

 Online but waiting for first audit to complete

 Agent online

 Agent online and user currently logged on.

 Agent online and user currently logged on, but user not active for 10 minutes

 Agent is currently offline

 Agent has never checked in

 Agent is online but remote control has been disabled

 The agent has been suspended

 An agent icon adorned with a red clock badge is a temporary agent.

Machine.Group ID

The list of Machine.Group IDs displayed is based on the Machine ID / Group ID filter and the machine
groups the user is authorized to see using System > User Security > Scopes.

Server File

The name of the file being distributed.

Agent File Location

The target directory on the managed machine. To the left of each target file location for a specific

machine ID are two icons. Click to cancel that file distribution for that machine ID. Click to edit
the destination path and filename for that machine ID.

Application Logging
Agent Procedures > Administration > Application Logging

The Application Logging page displays a log of Agent Procedures module activity by:

 Event ID

 Event Name

 Message

 Admin

 Event Date

This table supports selectable columns, column sorting, column filtering and flexible columns
widths (http://help.kaseya.com/webhelp/EN/VSA/9040000/index.asp#6875.htm).

http://help.kaseya.com/webhelp/EN/VSA/9040000/index.asp#6875.htm

 Index

 51

Index
6

64-Bit Commands • 34

A

Action Buttons • 2
Agent Procedure Status • 41
Agent Procedures Overview • 1
Agent Time • 1
alarmsSuspend() • 14
alarmsUnsuspendAll() • 14
Application Deploy • 44
Application Logging • 49

C

captureDesktopScreenshot() • 14
changeDomainUserGroup() • 14
changeLocalUserGroup() • 14
checkVar() • 9
closeApplication() • 14
comment() • 15
copyFile() • 15
copyUseCredentials() • 15
createDomainUser() • 15
createEventLogEntry() • 15
createLocalUser() • 16
createWindowsFileShare() • 16
Creating / Editing Agent Procedures • 4
Creating Silent Installs • 45

D

deleteDirectory() • 16
deleteFile() • 16
deleteFileInDirectoryPath() • 16
deleteRegistryKey() / delete64BitRegistryKey() • 17
deleteRegistryValue() / delete64BitRegistryValue • 17
deleteUser() • 17
disableUser() • 17
disableWindowsService() • 17
Distribute File • 48
Distribution • 40

E

else • 10
enableUser() • 18
eval() • 10
executeFile() • 18
executeFileInDirectoryPath() • 18
executePowershell() • 18
executeProcedure() • 19
executeShellCommand() • 19
executeShellCommandToVariable() • 20
executeVBScript() • 20

F

Folder Rights • 39

G

Get File • 47
getDirectoryPathFromRegistry() • 20
getFile() • 20
getFileInDirectoryPath() • 21
getOS() • 10
getRAM() • 10
getRegistryValue() / get64BitRegistryValue • 11
getURL() • 21
getURLUsePatchFileSource() • 21
getVariable() • 22
getVariableRandomNumber() • 22
getVariableUniversalCreate() • 22
getVariableUniversalRead() • 23
giveCurrentUserAdminRights() • 23

H

hasRegistryKey() / has64BitRegistryKey() • 11

I

IF Commands • 9
IF-ELSE-STEP Commands • 6
impersonateUser() • 23
installAptGetPackage() • 23
installDebPackage() • 24
installDMG() • 24
installMSI() • 24
installPKG() • 24
installRPM() • 24
isAppRunning() • 12
isServiceRunning() • 12
isUserActive() • 12
isUserLoggedin() • 12
isYesFromUser() • 12

L

logoffCurrentUser() • 25

M

Manage Files Stored on Server • 38

P

Patch Deploy • 43
pauseProcedure() • 25
Pending Approvals • 42

R

reboot() • 25
rebootWithWarning() • 25
removeWindowsFileShare() • 25
renameLockedFile() • 25
renameLockedFileInDirectoryPath() • 26

Index

52

S

Schedule / Create • 1
scheduleProcedure() • 26
Scheduling Agent Procedures • 3
sendAlert() • 26
sendEmail() • 28
sendMessage() • 28
sendURL() • 28
setRegistryValue() / set64BitRegistryValue() • 28
sqlRead() • 29
sqlWrite() • 29
startWindowsService() • 30
STEP Commands • 14
stopWindowsService() • 30

T

testFile() • 13
testFileInDirectoryPath() • 13
transferFile() • 30
true • 13

U

uninstallbyProductGUID() • 31
unzipFile() • 31
updateSystemInfo() • 31
useCredential() • 31
Using Variables • 35

V

Variable Manager • 37

W

windowsServiceRecoverySettings() • 32
writeDirectory() • 32
writeFile() • 32
writeFileFromAgent() • 33
writeFileInDirectoryPath() • 33
writeProcedureLogEntry() • 33
writeTextToFile() • 33

Z

zipDirectory() • 33
zipFiles() • 33

	Agent Procedures Overview
	Schedule / Create
	Action Buttons
	Scheduling Agent Procedures
	Creating / Editing Agent Procedures
	IF-ELSE-STEP Commands
	IF Commands
	checkVar()
	else
	eval()
	getOS()
	getRAM()
	hasRegistryKey() / has64BitRegistryKey()
	getRegistryValue() / get64BitRegistryValue
	isAppRunning()
	isServiceRunning()
	isUserActive()
	isUserLoggedin()
	isYesFromUser()
	testFile()
	testFileInDirectoryPath()
	true

	STEP Commands
	alarmsSuspend()
	alarmsUnsuspendAll()
	captureDesktopScreenshot()
	changeDomainUserGroup()
	changeLocalUserGroup()
	closeApplication()
	comment()
	copyFile()
	copyUseCredentials()
	createDomainUser()
	createEventLogEntry()
	createLocalUser()
	createWindowsFileShare()
	deleteDirectory()
	deleteFile()
	deleteFileInDirectoryPath()
	deleteRegistryKey() / delete64BitRegistryKey()
	deleteRegistryValue() / delete64BitRegistryValue
	deleteUser()
	disableUser()
	disableWindowsService()
	enableUser()
	executeFile()
	executeFileInDirectoryPath()
	executePowershell()
	executeProcedure()
	executeShellCommand()
	executeShellCommandToVariable()
	executeVBScript()
	getDirectoryPathFromRegistry()
	getFile()
	getFileInDirectoryPath()
	getURL()
	getURLUsePatchFileSource()
	getVariable()
	getVariableRandomNumber()
	getVariableUniversalCreate()
	getVariableUniversalRead()
	giveCurrentUserAdminRights()
	impersonateUser()
	installAptGetPackage()
	installDebPackage()
	installDMG()
	installMSI()
	installPKG()
	installRPM()
	logoffCurrentUser()
	pauseProcedure()
	reboot()
	rebootWithWarning()
	removeWindowsFileShare()
	renameLockedFile()
	renameLockedFileInDirectoryPath()
	scheduleProcedure()
	sendAlert()
	sendEmail()
	sendMessage()
	sendURL()
	setRegistryValue() / set64BitRegistryValue()
	sqlRead()
	sqlWrite()
	startWindowsService()
	stopWindowsService()
	transferFile()
	uninstallbyProductGUID()
	unzipFile()
	updateSystemInfo()
	useCredential()
	windowsServiceRecoverySettings()
	writeDirectory()
	writeFile()
	writeFileFromAgent()
	writeFileInDirectoryPath()
	writeProcedureLogEntry()
	writeTextToFile()
	zipDirectory()
	zipFiles()

	64-Bit Commands
	Using Variables
	Variable Manager
	Manage Files Stored on Server
	Folder Rights

	Distribution
	Agent Procedure Status
	Pending Approvals
	Patch Deploy
	Application Deploy
	Creating Silent Installs

	Get File
	Distribute File
	Application Logging
	Index

