“
Kaseya

Kaseya 2

Traverse Developers
Guide




Agreement

The purchase and use of all Software and Services is subject to the Agreement as defined in Kaseya’s
“Click-Accept” EULATOS as updated from time to time by Kaseya at
http://www.kaseya.com/legal.aspx. If Customer does not agree with the Agreement, please do not
install, use or purchase any Software and Services from Kaseya as continued use of the Software or
Services indicates Customer’s acceptance of the Agreement.”

©2014 Kaseya. All rights reserved. | www.kaseya.com



Contents

Preface 1
BVE FlexAPI Protocol Reference 3
L0 10T T PSSR 4
CONNECHING 10 T8 SEIVET ....ciiiiieiii ettt e e et e s et et e s aa b et e e e s e e e e anbe e e s ennnes 4
DiSCONNECHING fTOM ThE SEIVET ... ittt e s e e abb e e e s annee s 4
Command/Reply FOrMAattiNng RUIES .......ooueiiiiiiiii et s e s 4
(O4 11T 1 ] 141 1 4= 4 [0 S 3 P UPTU PP UPRT PP 6
=01 1[0 10 O PP PPPPPRPRORTO 6

Yol 1[0 g W ex (== L= T TP PT TP 6

Yot o] o (=] [ = PR 7

=T o T L S SRR 7

o Tod (o g B 0o F= L =T PPN 7

=T 1T O =TT 30 SRR 7

2T 01T O P TS - (= 7
AAMINCIASS.AEIETE ...t e e e e e et e e e e e s e sanbeaeeeae s 8
AAMINCIASS. LIS ...t e e e e e st e e e e e e e s nbebe e e e e e e e e snnnbeaeeeaeeas 8
AAMINCIASS. UPAALE ...ttt e e s e e e s ab e e e annbe e e e annes 8

= To 001 (T {010 o 10 TR PPPRPUP PR 8

(o0] 01 c= 1] 0[] 00 QTP PPRPUP R 8

(o0] 01 c= 1 0[] g ol (Y- 11 TP PT TP 8

(ool g r= 1o 1T oo (=] 1= = PSPPSR 10

(oo T g1 =11 o 1T o L] PP PR 10
CONLAINET.MEMDEIS ... e et e e e snbe e e e e nnbe e e e ennes 11

(o0 ] r= 1 01T S - LU SR 12
CONTAINET.UPUALE ....eiiiitiiie ittt e e e h bt e e s ea bt e e e bt e e e e anb e e e e nnbeeeeennees 12

(o[ o= 15 (4 =T 0 00 G PSSR PR 14
JEPAIMMENT.CIEALE ...ttt e bt e e e bt e e e anb e e e e nnbe e e e eneees 14
EPANTMENT.AEIETE ... 14
EPAITMENTLIST. ... e e e b e e e e e e e e e 14

(oL oFo T g ng g L=t W S 0] [ PP PP UTTR O 15

(oL oF=Tgng g 1=t BT U ] o 1= o o [F PP PP PTTT O 15

(o =T T T =TT AU oo I L (= SRR 15

[0 oAV o7 35 G PR 15

(o LoV o ol £ Y- | (= RO PRR 15

(0 Lo Tt 0[] =] (SRR 16

(o oAV oT N2> d oo | o A PP 16

(0 o T = £ SR 17
BVICE.IMOVE .....eeeeieeee ettt ettt e e e oottt e ee e e e e e e e beeeeeeeeeeaanesbeeeeeaeeeaansnbeeeaeaeeeaannnnees 17

(0o Tt = 1S o = PR 17
EVICE.SEALUS .....eeeeieeie ettt ettt e e e ettt e e e e e e e s e a bttt e e e e e e s e amnebeeeeeaeeeaaannnbeeeeeaeeeaannnnees 17

(oo Tot YU ] o 1= o Lo TP RTTT T 17
EVICE.UPAALE ...ttt e oottt e e e e e s e bbbt e e e e e e e s e nbbbe e e e e e e e e s nnbnbees 18

(o LV Tot =] D=t o T=T g o =T o oy A0 TP PPPR RO 19
dEVICEDEPENUENCY.CIEALE .. .eiiiie it ciiiiiee e e e e et e e e e e e e e s e e e e e s s e sttt e e e e e e e e sanrabaeeeeeeessnnnnneees 19
deViCEDEPENAENCY.AEIETE. .....cii e e e e e s e e e e e e s s nrnreees 19
deVICEDEPENUENCY.LIST......uiiiieiieee i e e e e s e r e e e e e e e nnaaees 19

(0 o = PSS 19

(o o =T o1 T (= SRR 20



(oo T[] =] (TP PP RTTT 20

(o o L= 1= TR 20

(o [0 L= T 0T oo F= L (= U EURR 20

(0 o 1= G0 QPSRRI 20
(0 0 =) Qo] (=T | (SRR 20

(o o L= Q0 =1 = - PSR 21

(0 o L= QU oo L= L (=PSRRI 21

[0 [0 123 G 11 O PO PR PRP 21
Y= 98 L 21

[ Tor=11T0] o 15 G 21
[oTor=1aT0] o Jox (Y- 1 (=SOSR 21
[oTor=11T0] a o (=1 = (YRR 21

[ Tor=1aT0] o 101 E) APPSO PPPUORPR 22

[oTor= 1uTo] A U] o 0 b= 1= TSP UPP TP 22
FESUILLIST ..ottt e e e e et e e e e e e e e e e ba b s e e e e e e ees b e eeeeeeeebaba e eeeerearranas 22

LS £ T PSP PR PP PPPPPPPPPPPRt 22
LS F= W e (=T L (TSP PPPRPPPRUPPRt 22

LS = WU o = (=TS EEERR 23

LY F= W0 L= 1] (< 23

LS F= TR 23

LY P2 TR = L[ 1 23

LSS 00 P 23
[ B o T (= P 23
LTS 0 =1 (] PSR RRPPNY 25
LTS 0 1S SO PP SRR PPPPRIRt 26
L3S B =TT U] L= PPN 26

LS R o] o] (=1 TR 26

LESTS ST U 0= o (o PRSP 26

LU A0 oo F= L= PSRRI 27
LUEST=T 0 PRSP ORRPRPPPN 27
(UL o (=T | < PPN 27

LEESY Y0 11 151 28

LU LYY 1) S 28
USEI.TEPIESEINT ...ttt ettt ee e et e eeeeeeaeeeeseeeeeeeeeesesesesesesesssesesesesesesebesesesebebesebenerererenes 28
(UL AT oo F- L= P PP O TP PP PT PPN 28

(UL =T (01 F= TS0 GO PTUPPP SRR USPPPIN 28
USEICIASS.CIBALE ...uvvuii ettt ettt e e e e e et e e e e e e e e e et et s e e e e e e ees b e e eeesererabannnns 28

TUEY =T O F= TS0 =1 [T (PR PUPRRRR 28

(R (O F= T 1) PRSP PPPPPPPRRt 28
USEICIASS. UPUALE ..eeeie ettt e e e e e e e s e s e e e e e e e s e et b br et e e aeeesansnbeeeeeaeeesannnneees 29
LT T g = U ] ][ SRR 29
Creating a8 NeW DeviCe @nd TEST ......oiuiii ittt e e 29
Creating an AdVanCed POt TESE......cuiuiiiiiiiee et e 30
Creating a New Test Container and Placing It in a New Device Container...............cccceeenee. 30
Traverse REST API 31
REST APL OVEIVIEW ...t e e e e e e e e e s e s e e e e s s s s s s seseseseseseaeansesens 32
REST COMMANA FOIMAL......iiiiiiiiiiiiiei et e e e e e e e e et e e s e e e e eeesa bt eeeeesessbaaa e seeeseeessbanneeeeessssranns 32
REST COMMANAS IN TIAVEISE ....uuuuuiiiiiiiniiiiiee e e se e s s s s s s s e s s s s s s s s s s s s se s s sesaseseseseseseseseseseseseseses 32
0o 1 SRR 32
RTAT L0 AN o' 33
10T 0 U 33
DBVICES. LISt .. it ———————— 33



External Data Feed (EDF) Reference 35

(O Y= = PR PUPPPPOTPPR 36
(@] gl aT=Tox 11aTo I o T I g1 TS =T V7= SRR 36
DiSCONNECHNG FIrOM the SEIVE ....ici ittt e e e s e e e e e e e s e n e e e e eeeesanntnbaeeeeaeeeannrnrenes 36
Command/Reply Formatting and COMMANGAS ........c.uuiiiiiiiiieeiiiee ettt 36
(@312 A 0] 141 4= 1 [0 £SO SEERR 37
TEMPIALES TOF EDF TESES. ... uuiiiiiiiiiee ettt ettt ettt ettt e ettt e st bt e e sttt e e e s bbbt e e sabbb et e sabbb e e e anbbbeeesnnneeas 39
EDF VErSUS PIUGIN MONITOIS .....ciiiiiiiiie ittt s et e st e e s e e s an e e e s annbe e e e annnes 39
e T 4] o] [ O PO PP PP PUPPPO 40
Traverse Perl API 43
(@Y= = PR PPPPRTPPR 44
Zyrion::EXternalData - EDF AP ...ttt e e s e e e e e e s e e e e e e e s rr e e e e aeaeann 44
T PP 44
(ST = o1 Ko | PO PP OTPPPP PRI 44
[0 o | o TP RPOUPPPPUPPPRR 44
[0 [ 11 | PP PP P R PPPTPPPI 45
[INSEITRESUIL ...ttt et e e e et e e e e st e e e e e sab bt e e e sabe e e e e anbb e e e e anbneeeeas 45
ZYFONIIMESSAQE = ISIM AP ..ttt et e e s b e e e s b e e e e e s b n e e e e be e e e e arreeeeaa 46
12 TP 46
LT3t = (o] 1Y Ko | DT TP PP PRI 46
[ o 1o DT PO UPP PR UOPTPPPP 46
L OgOUL L. ——————— 46
L EST =T Y (=TS Vo 1= SRR 47
ZYrioN::ProvisSioNiNg = BVE APl .......uueii oottt e e e et e st e e e e e e s s et b e e e e e e e e snnrrraeaaaeeaeaans 47
T ST 47
CreateX, ListX, UpdateX, DeleteX, SuspendX, ResumeX, EXportX, MoveX .........cccccvvvveeeesiicvnnnnn 48
LTS (OTo] a1 =TT Lo 1Y/ =T 0 7= £SO 48
GEERESUIICOUNL ...ttt e e e e ettt e e e e e e e et e e e e e e s e ansbaeeeeeeeeaaanssbeneeaaeeeaanenneees 48
GERESUIIRET ...ttt e e e e e ettt e e e e e e s e e na b et e e e e e e saanesbeeeeaaeeesanenneees 49
GRERESUIESEL ...ttt e e ettt e e e e e ettt e e e e e e e e s nnbeeeeaeeeesaannsbeeeeaaeeeaanrnneees 49
GEEXSHIALUS ... 49
[ o 1o F PP P PRI 49
L OgOUL .. ———————— 50
GO EITO IS .. e ———————— 51
T 1T G T L 1] ][RR 51
Finding Tests Without ACtIONS ASSIONE ..........uuiiiiiiiiee ettt e e sbaeeeees 51
Creating 8 CUSIOM SINIMP TEST.....cciiiiiiii ittt sttt e st e e e bt e e e snbeeaesanneeeas 52
Plugin Monitors 53
(O YT QYT TP PRRPRP 54
F Yo (o [T I N AN IS A Y] o= TSRO 54
Creating A NeW PlUGin JAVA IMONITOL ..........uuiiiiiiiiie ittt et e e e e e st e e e e e e e e aanbeaeeeeaaeeeannn 56
Configuration File FOIMAL..........ccuuiiiiiii e e e e e e s e st r e e e e e e s e e ta e e e e e e e e snnrnneees 56
ATAY 1T T N L= o 18 o T F= TSP 58
Configuring the PIUGIN PaCKAgE ........uiiiiiiiiiiiiic et e e e s e e e e e e nrneeees 58
L ()Y ] T o T To N 10 T T T I =T £ PR 58
Creating A New Plugin SCIPt MONITOT .........uuiiiieeiieiiiiieie e e s s e e e e e s s e e s e e e e s st ae e e e e e e e s snnrnnneeeeeeseannns 59
Configuration File FOIMMAL..........cccuuiiiiieie e s s e e e e e s e s e e e e e e s e snnn e eeeeeeesnnrnneees 59
WItING The PIUGIN SCHPL. ...t e e st e e e nabe e e e e eees 60
Sample Plugin Monitor with Discrete Thresholds ... 61
Extending the MesSage HANAIET ...t e e 62

e
[11]



External Authentication 63

(O Y= = PR PUPPPPOTPPR 64
Authentication PIUGIN JAVA ClaSS ........uuuiiieiiiiiiiiiii s ee e s e e e e e e s e e e e e e s e st ee e e e e s s e annreeneeeenas 64
P (ol a1 =T 0T r= L D 1= o o] (o] o SO 65
AULNENLICAtION PIUGIN SCIPL ...eiiiiiiieie ittt sttt e e sttt e e sbb et e e sbb e e e e sbbeeeesnnaeeas 65
WED URL AULNENTICALION .....vvieiie e ettt ettt e e e e e st e et e e e e s et e e e e e e s e snntneeneaeeeanannnrnaeneeeens 67
Plugin Actions 69
(O YT QYo PP PP OPPPPPRPPP 70
Creating NEW PIUGIN ACHIONS ........uiiiiii ittt ettt e e e e e b bt e e et e e e e e s anbebeeeaeeeseansbeseeeaaeeaaaanes 70
=T ] o] (=2 U OP PP UPTT PP 73
Extending the ACION FIramMEWOTK ...........uuuiiiieeiiiiiiiiie e s st e e e e e s s e e e e e e s st e e e e e e e s ssntnteereeaeeesnnnnreees 74
PrEIEQUISITES ..oeiiiiiiiiiieiie e e et e e e e e e e s e e e e e ee e e s e s e et eeeeeeeesassebeeeeeeeeesnnsreteeeeeeeseannnrnnneeeanns 75
1S3 = 1= L4 SR 75
Configuration 0N WINOOWS .........uuiiiiiiiiiee ettt ab bt e e bt e e e s bt e e s bbe e e e snnneeas 76
ConfIGUIAtioN ON UNDX ...ttt s bt e e s bbbt e e s bt e e e ebb e e e e snnneeas 76
R C018 o] (=T gToTo 1] o o T O PP PP P PPPPPON 77
Web Services API 79
(O YT QYo PP PP OPPPPPRPPP 80
Traverse Web Services APIWOTKFIOW .........uuiiiiiiiii e e e 80
LI = ST 012131 o] PSSR 81
(O] o=t 1 (= PR 82
LG AT LTSI AT S 1= SO 82
ST T 0] o] =3 O To [ ORI PR 83
SeSSION EStabliSNMENT.......ooi oo e s e e e e e e e 84
LD/ L= TP TP P PP PP PP PP PPPPPPPPPRN 84
CONtAINEIS, DEVICES & TOSIS ...uvuuiiiiiiieeeieee et e ettt e e e e e e e et e e e e e e s e e etabaeseeeeesessbaaaeeeaeeeees 85
=T ) ES R T= ] T = PSP 86
Traverse CLI (Command Line Interface) 87
(@Y= = PRSPPI 88
(=T =T [T (PR 88
LT o1 | IS Y 1] - ¥ SO PT PR 88
(©0] o) {To U] =11 [o] 0 | = SO PPT TP 89
ST ] (o g Y = T =T [T 4= o SO PT PR 89
RUNNING A QUETY ...ttt ettt ettt e ket e 4 a bt oo a b bt e e 4Rk bt e e e a kbt e oo ea kbt e e e anb e e e e aanbe e e e annbeeeeannnes 90
Y= (o o T - SR EERPR 93
o F (o o 0Tt <11 [ T TP UPTR 94
[ 1] [0 IS T =] [=Tod 1 o] o F PP PRI 96
OUIPUL FOMMAL ... 97
FULUIE ENNANCEMENTS ... .eiiiii ittt e ettt e e e sttt e e e st et e e e snbe e e e e snbeeeeeanbeeeeesnbaeeenns 99
Index 101




Preface

Preface

About this Guide
This reference guide describes the Plug-In framework, Application Programming Interface (API), and
Web Services interface for Kaseya Traverse.

Audience
This guide is intended for administrators and programmers who are familiar with the Traverse software
and wish to extend its functionality using the provided APIs and Web Services interface.

Upgrading from NetVigil

IMPORTANT: If you are upgrading from NetVigil to Traverse, you must review the namespace used in
your current scripts. While full attempts have been made to keep the APIs backward compatible with

NetVigil, there might be circumstances where the namespace has changed. All such incompatibilities
have been marked with "NETVIGIL COMPATIBILITY" in this user guide.

Getting More Information
For more information about Traverse, refer to the following documents:
= Traverse User Guide (http://help.kaseya.com/webhelp/EN/tv/R8/EN_traverse_R8.pdf#zoom=70&navpanes=0)
= Traverse Release Notes (http://help.kaseya.com/webhelp/EN/RN/index.asp#TraverseReleaseNotes.htm)

Contacting Kaseya
= Customer Support - You can contact Kaseya technical support online at:
> https:/lhelpdesk.kaseya.com/home (https://helpdesk.kaseya.com/home)
= Community Resources - You can also visit the following community resources for Kaseya
Traverse:

» Knowledge base at: http://community.kaseya.com/kb/w/wiki/1206.kaseya-traverse.aspx
(https://helpdesk.kaseya.com/forums/22931123)

» Forum at: http://community.kaseya.com/xsp/f/340.aspx (http://community.kaseya.com/xsp/f/340.aspx)


http://help.kaseya.com/webhelp/EN/tv/R8/EN_traverse_R8.pdf#zoom=70&navpanes=0
http://help.kaseya.com/webhelp/EN/RN/index.asp#TraverseReleaseNotes.htm
https://helpdesk.kaseya.com/home
https://helpdesk.kaseya.com/forums/22931123
http://community.kaseya.com/xsp/f/340.aspx




Chapter 1

BVE FlexAPI Protocol Reference

In This Chapter

OVBIVIBW . ...ttt ettt ettt ookttt e ook bt e e e ea b et e e e ea b et e e e aa b e e e e e aab e e e e e anbe e e e e aabeeeeeannneeeea 4
CONNECEING 10 thE SEIVET ..ot 4
Disconnecting from the SEIVET ... e 4
Command/Reply FOrmatting RUIES ...........uoiiiiiiiiii e 4

(17T 1 O] 0 111 4 T=1 [0 ST 6



BVE FlexAPI Protocol Reference

Overview

The Business Visibility Engine (BVE) in Traverse handles the distributed architecture transparently
and provides a common interface for provisioning, data and report retrieval. Through the BVE, you can
access the provisioning database and real-time statistics.

The BVE server is accessed via a text based protocol over a TCP socket. Protocol messages can be
sent from programs written in C, Java, Perl or any other language.

An alternative to accessing the BVE Server directly is to use the Traverse Perl API (page 44).

Connecting to the Server

Communication with the BVE Server consists of two phases: a connection establishment phase and a
command-execution phase. After connecting to the TCP port (default 7661) on the BVE server, the
remote client authenticates using a username and password, the same as logging in using the web
user interface. Once the user is authenticated, all subsequent commands sent to the server are
executed with the permissions and privileges of the specified department that the user belongs to. It is
possible to change the privilege level at any point in the command-reply phase by entering new
authentication information using the login command.

Once the connection establishment phase has been completed, the client application may send one
command at a time and wait to receive a reply from the server. This may consist of multiple lines of
output.

The client application establishes a connection to the BVE server by opening a TCP/IP socket on a
pre-defined port number specified in etc/emerald.xml. The default port number is 7661. Upon
establishment of the TCP session, the server greets the client with a welcome message following the
rules outlined below (page 4).

Disconnecting from the Server

When the client application disconnects from the Traverse platform, it should issue a disconnect
request instead of simply closing the socket connection. This allows the server to perform proper
cleanup before disconnecting the session.

Disconnect on Timeout

Also if the BVE server does not receive anything from the client for an extended period, the session
times out and disconnects the client from the BVE server. The default timeout is currently 5 minutes.

Command/Reply Formatting Rules

The commands sent by a client and responses sent back by the server must adhere to the following
formatting conventions.

Client Command Format
= Each client command is composed of a single line of text terminated by a newline character. A
carriage return followed by a newline (\ r\n) is considered to be the same as a newline character
(\n) alone.

= Client commands may or may not require additional parameters. Each parameter consists of the
option name and value, separated by an equal sign (=) and enclosed in quotes. Multiple



BVE FlexAPI Protocol Reference

parameters should be separated by a comma (,) and space. Example commandl=valuel,
command2=value? ... If a parameter supports multiple values, the values should be separated
by a comma (,). Example: commandl=valuel,value?2, ...

No whitespace characters should appear in the argument name. No whitespace should occur
between the argument name and the equal (=) delimiter. Whitespace that occurs after the equal
(=) is considered part of the argument value.

Double-quotes are not permitted as part of the value.

For each client command, the server responds with a response code indicating success or failure,
and optionally some descriptive text indicating actions taken.

If a client command produces a reply with more than one line of output, the server responds with
a 203 response code (see below). Each set of output is terminated with a newline (\n) and the
end of the array is indicated with a newline (\n) by itself.

Command and parameter names are NOT case sensitive.

Parameters for any command may appear in any order following the command.

Certain parameters indicate a value of <regexp>, which indicates that the parameter may point
to a non-unique value. You can use an asterisk (*) as a wildcard in such case. For example, dev*
would match devicel and Device B butnotmy device.However, *dev* would match all
three.

Parameters which indicate <value> require a value which is already present in the database,
while <new_ value> indicates a new value to be inserted into the database.

All date/time values should be specified in YYYYMMDDhhmm format and in the logged in user's
timezone.

For startTime, a blank value or zero (0) indicates 24 hours ago and for endTime, it indicates
now.

timezone value is specified in format listed
athttp://www.timezoneconverter.com/cgi-bin/zonehelp.tzc?cc=US.

A special parameter userName=<value> is available to admin users. When used, the command
is executed for the matching objects as the specified user.

Server Response Format

The server always responds to client initiated commands/requests with text in the format: <status
code> <response code> <optional informative text>
where <status_code> is one of the following:

OK, which indicates the command/request was successful
ERR, which indicates failure to execute the request

and <response code> is a three digit numeric code which provides additional details about the
status code.

Server Response Codes Response Code Description

200 Server ready for initial handshake

201 Request accepted and processed, ready for next request
203 Request accepted, multi line response follows

298 Request accepted, server will halt

299 Session ended, server will close socket connection

Debugging information. These messages will be printed before a 200, 400

300 - 399 or 500 level message

400 level - client side error (try again)
401 Authentication failure



BVE FlexAPI Protocol Reference

402 Logged in user does not have permission to perform requested task
410 Unknown command - use 'help’ for list of commands

411 Feature has not been implemented yet

412 Not enough parameters specified - use 'help command.name'

413 Invalid Parameter parameter specified - use 'help command.name'
420 One or more objects already exist

421 One or more of the objects requested does not exist

500 level - server side error

595 Communication failure with remote database, please try again later
596 Maintenance in progress, please try again later

597 Server too busy, please try again later

598 Backend failure, server will close socket connection

599 Server unavailable, server will close socket connection

Client Commands

Login
Provides authentication information to the server. Accepts forward slash or space as separator:

LOGIN <login id>/<password>
LOGIN <login id> <password>

If you are logged into the BVE server as an administrator, you can perform an operation as another
user by specifying the username=<value> in commands or by calling user. represent to
represent another user.

Logout | Quit
Ends a login session.
LOGOUT

Help
Typing HELP will list all the commands available in the API help.

HELP <command>
HELP device.list

action.x

action.create

Creates a new action. Using 0 for <n_tests>on notifyAfter or repeat parameters sends an
immediate notification and does not repeat the notification respectively. It is possible to get notifications
on multiple states by specifying different state names separated by the | symbol for the noti fyon
parameter. Assigning a method of none deletes that action item. Up to five methods (method1 through
method5) can be defined for a single action.



BVE FlexAPI Protocol Reference

action.create "actionName=<new value>"

[, "method<l..5>=<none|email>"]

[, "notifyOn<1l..5>=<ok|warning|critical |unknown>"]
[, "recipient<l..5>=<new value>"]

[, "notifyAfter<l..5>=<n tests>"]

[, "repeat<l..5>=<n tests>"]

[, "description=<new value>"]

[, "username=<value>"]

The username parameter can be used by an administrator to create actions for an end-user
department.

action.delete

Deletes one or more existing actions.

action.delete <"actionName=<regexp>", | "actionSerial=<value>">
[, "method=<regexp>"]

[, "recipient=<regexp>"]

[, "description=<regexp>"]

action.list

Lists actions based on search criteria.
action.list
["actionName=<regexp>" | "actionSerial=<value>"]

action.update

Updates configuration information of one of more existing actions. If actionSerial and actionName
are both given, then the action matching the serial number given by actionSerial is updated with
the name given by actionName. Omitting an action item implies the intent to remove that particular
item. So if there are two action items for the action profile, and you are updating the parameters for
action item #2 (method?2), you must include the details of methodl1 verbatim (available via the

action.list command) first, and then the updated parameters for method2. Otherwise action item
#1 is removed.

This command requires all the parameters to be specified even if you want to change only some
parameters due to the nature of this command.

action.update <"actionName=<regexp>" | "actionSerial=<value>">

, "method<l..5>=<none|email>"

, "recipient<l..5>=<new value>"

, "notifyOn<l..5>=<o0k, |warning, |critical, |unknown>"

[, "notifyAfter<l..5>=<n tests>"]

[, "repeat<l..5>=<n tests>"

[, "description=<new value>"]

adminClass.x

adminClass.create

Creates an administrative group. Administrative groups are assigned user groups, and members of
administrative groups can access information on any device that is part of a department under a user
group assigned to that particular administrative group.

adminClass.create "groupName=<new value>"

[, "comment=<new value>"]

[, "userClasses=<new value,...>"]



BVE FlexAPI Protocol Reference

adminClass.delete

Deletes an existing administrative group.

adminClass.delete <"groupName=<regexp>" | "adminClassSerial=<value>">
adminClass.list

Lists administrative group information based on search criteria.

adminClass.list ["groupName=<regexp>" | "adminClassSerial=<value>"]
adminClass.update

Updates user group assignments or the name of an existing administrative group. If
AdminClassSerial and groupName are both given, then the administrative group name is updated.

adminClass.update <"groupName=<regexp>" | "adminClassSerial=<value>">
[, "comment=<new value>"]
[, "userClasses=<new value,...>"]

adminGroup.x

The adminGroup commands are similar in syntax to the department . x commands. Please see the
description for department (page 14) commands.

container.x

container.create

This command creates containers.

container.create "serviceName=<value>"

, "serviceType=<device|test>"

, "memberListMethod=<auto|manual>"

, {membership parameters}

, {severity parameters}

[, "parentNames=none|<valuel,value2,...>"]
[, "actionName=none |<value>"]

[, "comment=<value>"]

[, "displayComment=<true|false>"]

[, "departmentName=<string>"]

The container name must be unique within the end user department or administrative group, and must
not be case sensitive. The container name cannot be the same as a device in your Traverse
environment. Containers cannot have the same name as an existing device.

When serviceType=device (default) and memberListMethod=manual (default),

{membership parameters} include the following:
,memberList=<regexp 1,regexp 2,...>

If any comma-separated entry for the value of memberList begins with #, it indicates another
container is nested below this new container. Administrator users can specify devices from end user
departments by using the department name as a prefix with a dash (-) as a separator.

Examples:
container.create "serviceName=My Admin Container", "serviceType=device",
"memberListMethod=manual", "memberList=Corporate - cisco*, #Another Admin

Container", "severityMethod=auto"



BVE FlexAPI Protocol Reference

container.create "serviceName=All End User Containers", "serviceType=device",
"memberListMethod=manual", "memberList=\* - #*"

Note the use of a wildcard for both the department and container names. If a matching department
name is not found, use the entire entry as a device in the user's department.

When serviceType=device and memberListMethod=auto
{membership parameters }include the following:

[, "ruleDeviceName=<value>"]
[, "ruleDeviceType=<value>"]
[, "ruleDeviceModel=<value>"]
[, "ruleDeviceVendor=<value>"]
[, "ruleDeviceTagl=<value>"]
[
[
[
[

~

, "ruleDeviceTag2=<value>"]
, "ruleDeviceTag3=<value>"]
, "ruleDeviceTagd4=<value>"]
, "ruleDeviceTagb=<value>"]

You must specify at least one rule. You can specify each rule parameter only once. The value supports
multiple regular expressions.

Example:
container.create "serviceName=San Jose Devices", "serviceType=device",

"memberListMethod=auto", "ruleDeviceName=*sjc*",
"ruleDeviceType=unix*", "actionName=HQ Failure", "displayComment=false"

When serviceType=test, memberListMethod is an optional parameter with manual as the only
valid value. {membership parameters} include the following:

, "testListMethod=<auto|manual>"

[, "testName=<regexp 1,regexp 2,...>"]

[, "testType=<type subtype pair 1,type subtype pair 2,...>"]

When serviceType=test and testListMethod=auto, testName and testType parameters
are not required. Instead, you must include all current and future tests for the selected devices in the
container.

Example:

container.create "serviceName=Router Tests", "serviceType=test",

"memberListMethod=manual", "memberList=cisco*", "testListMethod=auto",
"actionName=none"

When serviceType=test and testListMethod=manual, the testName parameter is required.
testType is an optional parameter that you can use to further filter the list of tests.

Example:

container.create "serviceName=All RTT Tests", "serviceType=test",
"memberListMethod=manual", "memberList=*", "testListMethod=manual",

"testName=*", "testType=ping/rtt", "actionName=Slow Response",
"comment=Response Time to Remote Sites", "displayComment=true"

severity parameters includes the following, where N=1, 2, or 3:
[, "severityMethod=<auto|manual>"]

[, "ratioN=<value>"]

[, "memberSeverityN=<ok|unknown|warning|critical>"]
[, "serviceSeverityN=<ok|unknown|warning|critical>"]

If severityMethod=auto, the remaining parameters are not required. If
severityMethod=manual, you must specify at least one set of parameters. A complete set includes
all three parameters.You can use the parentNames parameter to nest the a newly created container
under other existing containers. Because you can nest a container below multiple containers, the value
can specify a comma-separated list of existing containers. However, you can only specify device
container names. A value of none indicates that the container is a top level container.



BVE FlexAPI Protocol Reference

Example:

container.create "serviceName=San Jose Devices", "serviceType=device",
"memberListMethod=auto", "ruleDeviceName=*sjc*",
"ruleDeviceType=unix*", "parentNames=Critical Servers,HQ"

An administrator can use the departmentName parameter to create a container in a specific
department.

container.delete

Deletes a container.

container.delete <"serviceName=<regexp>" | "serialNumber=<value>">
[, "moveChildren=<parent|top|delete>"]

[, "departmentName=<value>"]

If you are deleting a device container that has other containers nested below it, the parent is used as
the default value. The nested containers are moved to the immediate parent of the container you are
deleting.

If moveChildren=top, the nested containers are moved to the top level while preserving their
hierarchy. If moveChildren=delete, all nested containers are deleted recursively, unless a nested
container is specified under a different hierarchy.

Example:

container.delete "serviceName=HQ", "moveChildren=delete"

Administrator users can delete containers in their own admin-group. Administrators can use the
userName=<value> parameter to delete a container in end user departments. However, this action is
determined by the admin-class permission configuration.

container.list

10

Lists container information based on specified search criteria.

container.list <"serviceName=<regexp>" | "serialNumber=<value>">
[, "serviceType=<device|test>"]

[, "memberListMethod=<auto|manual>"]

[, "severityMethod=<auto|manual>"]

[, "parentNames=none|<valuel,value2,...>"]

[, "actionName=none |<value>"]
[, "departmentName=<value>"]

Use the optional parameters as search filters to narrow the listed containers. You can further filter the
results by using other parameters. For example filter by ruleDeviceName when
serviceType=device and memberListMethod=auto.

The output includes all parameters from the container.update command, with the exception of
newServiceName and memberList.

Examples:

Search for a container by serial number:

container.list "serialNumber=90027"

OK 203 request accepted, records returned: 1

"serviceName=Critical Servers", "serialNumber=90027",
"serviceType=device", "memberListMethod=manual", "memberListCount=3",
"severityMethod=auto", "parentSerialNumber=", "actionName=none",
"comment=", "displayComment=false"

Search for test containers with a specific action profile:



BVE FlexAPI Protocol Reference

container.list "serviceName=*", "serviceType=test", "actionName=Notify
Admin"

OK 203 request accepted, records returned: 1

"serviceName=[VoIP] Infrastructure", "serialNumber=200019",
"serviceType=test", "memberListCount=26", "severityMethod=auto",
"parentSerialNumber=130168", "actionName=Notify Admin", "comment=",
"displayComment=false"

Search for containers by name/wildcard:

container.list "serviceName=*server*"
OK 203 request accepted, records returned: 3

"serviceName=Unix Servers", "serialNumber=90016", "serviceType=device",
"memberListMethod=auto", "ruleDeviceName=", "ruleDeviceType=*Unix*",
"ruleDeviceModel=", "ruleDeviceVendor=", "ruleDeviceTagl=",
"ruleDeviceTag2=", "ruleDeviceTag3=", "ruleDeviceTag4=",
"ruleDeviceTagb=", "memberListCount=1", "severityMethod=auto",
"parentSerialNumber=90027", "actionName=none", "comment=",
"displayComment=false"

"serviceName=Critical Servers", "serialNumber=90027",
"serviceType=device", "memberListMethod=manual", "memberListCount=3",
"severityMethod=auto", "parentSerialNumber=", "actionName=none",
"comment=", "displayComment=false"

"serviceName=Windows Servers", "serialNumber=420035",
"serviceType=device", "memberListMethod=manual", "memberListCount=5",
"severityMethod=auto", "parentSerialNumber=90027", "actionName=none",
"comment=", "displayComment=false"

Show all top level containers:
container.list "serviceName=*", "parentNames=none"

OK 203 request accepted, records returned: 1

"serviceName=All Devices", "serialNumber=300003", "serviceType=device",
"memberListMethod=manual", "memberListCount=1", "severityMethod=auto",
"parentSerialNumber=", "actionName=none", "comment=",
"displayComment=true"

container.members

Lists the members of a container.

container.members <"serviceName=<regexp>" | "serviceSerial=<value>">
[, "departmentName=<value>"]

Output is in the following format:

"serviceName=<value>", "memberType=<device|container|test>",
"memberName=<value>", "memberStatus=<severity>", "deviceName=<value>",
"accountName=<value>", "deviceSerialNumber", "testSerialNumber"

When memberType=device Of memberType=container, deviceName iS empty and
accountName provides the name of the department for the device or container.

When memberType=test, deviceName is the name of the real device and accountName provides
the name of the department for that device.

Examples:

Show container members by name:

11



BVE FlexAPI Protocol Reference

container.members "serviceName=All Switches"
OK 203 request accepted, records returned: 1

"serviceName=All Switches", "serialNumber=70011", "memberType=device",
"memberName=switchO.zyrion.com", "memberStatus=Critical",
"deviceName=switchO.zyrion.com", "deviceSerialNumber=140000",
"accountName=My Company", "accountSerialNumber=49"

Show container members by serial number:

container.members "serialNumber=210186"

OK 203 request accepted, records returned: 4

"serviceName=Service Availability", "serialNumber=210186",
"memberType=test", "memberName=Packet Loss", "memberStatus=Unknown",
"deviceName=Email Relay", "accountName=Network General"
"serviceName=Service Availability", "serialNumber=210186",
"memberType=test", "memberName=Round Trip Time", "memberStatus=Unknown",
"deviceName=Email Relay", "accountName=Network General"
"serviceName=Service Availability", "serialNumber=210186",
"memberType=test", "memberName=Packet Loss", "memberStatus=Unknown",
"deviceName=Exchange Server (Frontend)", "accountName=Network General"
"serviceName=Service Availability", "serialNumber=210186",
"memberType=test", "memberName=Round Trip Time", "memberStatus=Unknown",
"deviceName=Exchange Server (Frontend)", "accountName=Network General"
container.status
Displays a summary of containers that have been created. The aggregate severity of each container is
provided.
container.status ["serialNumber=<value>" | "serviceName=<regexp>"]

[, "departmentName=<value>"]

container.update

Updates a container.

12



BVE FlexAPI Protocol Reference

container.update <"serviceName=<regexp>" | "serialNumber=<value>">
, "newServiceName=<value>"]

, "serviceType=<device|test>"]

, "memberListMethod=<auto|manual>"]

, "memberList=[+,]<regexp 1,regexp 2,...>"]

, "memberlistAppend=<true | false>"]

, "ruleDeviceName=<value>"]

;, "ruleDeviceType=<value>"]

, "ruleDeviceModel=<value>"]

, "ruleDeviceVendor=<value>"]

, "ruleDeviceTagl=<value>"]

, "ruleDeviceTag2=<value>"]

, "ruleDeviceTag3=<value>"]
"ruleDeviceTagd4=<value>"]

, "ruleDeviceTag5=<value>"]

, "testListMethod=<auto|manual>"]

, "testName=<regexp 1,regexp 2,...>"]

, "testType=<type subtype pair 1,type subtype pair 2,...>"]
, "severityMethod=<auto|manual>"]

, "ratioN=<value>"]

, "memberSeverityN=<ok|unknown|warning|critical>"]
, "serviceSeverityN=<ok|unknown|warning|critical>"]
, "parentNames=none |<valuel,value2,...>"]

, "actionName=none|<value>"]

, "comment=<value>"]

, "displayComment=<true|false>"]

[, "departmentName=<value>"]

In the above parameters:
serviceType is arequired parameter when you use the memberList parameter.
memberListMethod is a required parameter when you use the serviceType=device parameter.

~

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

You can use the newServiceName parameter to rename an existing service container. Container
names must be unique within the end user department or admin-group, and cannot be case sensitive.
Depending on the value of the serviceType, memberListMethod, and testListMethod
parameters, different membership parameters are available, same as the container.create
command.

The default value of memberListAppend is true to prevent accidental deletion of members from a
container. If this value is set to false, all previous members of the container will be removed and only
the specified members in this command will be part of the container.

If you are changing a device container to a test container (serviceType=test) and there are nested
containers below it, move those containers to the immediate parent of the container you are modifying.

Example:

DC1
+-DC2
+-DC3
+-TC1

container.update "serviceName=DC3", "newServiceName=TC2", "serviceType=test"

This results in a new hierarchy:

13



BVE FlexAPI Protocol Reference

DC1
+-DC2
+-TC1
+-TC2

Example of adding a new member to an existing container:

container.update "serviceName=All Devices",
"memberListMethod=manual",

Example of adding a JDBC test to a container:
telnet localhost 7661

login <user> <pass>

container.update "serviceName=JMX

"serviceType=device",

"memberList=#A11 RTT Tests"

Stats", "servicetype=test", "memberlistmethod=manual", "testlistmethod=manual

", "testName=JDBC Pool (path=/server,

name=jdbc/DataSource)

Active

Connections", "memberlist=host.FQDN", "memberlistappend=true"

department.x

department.create

Creates new department information. A user login of the same name as the newly created department

is also created with the specified password.

department.create "departmentName=<new value>"

, "groupName=<new value>"

, "password=<new value>"

, "passwordVerify=<new value>"

, "contactEmail=<new value>"
"contactPhone=<new value>"

, "company=<new value>"]

"addressl=<new value>"]

"address2=<new_value>"]

"city=<new_ value>"]

, "state=<new value>"]

, "zip=<new value>"]

, "country=<new value>"

~

~

~

[
[
[
[
[
[
[

depariment.delete

Deletes an existing department. Any login IDs, devices and tests associated with this department will

automatically get deleted as well.

department.delete
<"departmentName=<regexp>" |

department.list

Lists department information based on search criteria.

14

"departmentSerial=<value>">



BVE FlexAPI Protocol Reference

department.list

["departmentName=<regexp>" | "departmentSerial=<value>"]
[, "groupName=<regexp>"]

[, "company=<regexp>"]

[, "contactEmail=<regexp>"]

[, "contactPhone=<regexp>"]

[, "addressl=<regexp>"]

[, "address2=<regexp>"]

[, "city=<regexp>"]

[, "state=<regexp>"]
[, "zip=<regexp>"]
[, "country=<regexp>"]

depariment.resume

Unsuspends a previously suspended department. All login IDs associated with this department will be
able to log in to the system once again and all devices/tests for the corresponding login IDs will start to
be monitored again.

department.resume

<"departmentName=<regexp>" | "departmentSerial=<value>">

department.suspend

Suspends an existing department. All login IDs associated with this department will be locked out of the
system and all devices/tests for the corresponding login IDs will also be suspended.

department.suspend

<"departmentName=<regexp>" | "departmentSerial=<value>">
"reason=<new_value>"

department.update

Updates information for an existing department.

department.update
<"departmentName=<regexp>" | "departmentSerial=<value>">
[, "groupName=<new value>"]

, "company=<new value>"]

, "contactEmail=<new value>"]
, "contactPhone=<new value>"]
"addressl=<new value>"]
"address2=<new_value>"]
"city=<new_ value>"]
"state=<new value>"]
"zip=<new value>"]

, "country=<new value>"]

~

~ 0~

~

~

device.x

device.create

Creates a new device configuration in the configuration database.

When you create a new device using device.create, the rediscoveryEnabled parameter is
optional. If you do not specify this parameter, the department-specific default values are used. These
are configured using the Administration > Other > Test Parameter Discovery
(http://help.kaseya.com/webhelp/EN/TV/R8/index.asp#17625.htm) page in the web application. If
rediscoveryEnabled=true, you must configure the remaining rediscovery parameters. Specify
the rediscovery frequency in minutes. 720 (or 12 hours) is the minimum value accepted by the system.

15


http://help.kaseya.com/webhelp/EN/TV/R8/index.asp#17625.htm

BVE FlexAPI Protocol Reference

device.create "deviceName=<new value>"

, "address=<new value>"

, "locationName=<new value>"

, "deviceType=<nt|windows|unix|linux|solaris|vmware |xen|hyperv
san|nas|storage|router|switch|firewall |slb|proxy|vpnc|printer|wireless|oth
er>"

, "snmpCid=<new value>">

[, "comment=<new value>"]

[, "parentNames=<new value,...>"]

[, "clearOnOk=<true|false>"]

[, "smartNotify=<true|false>"]

[, "showOnSummary=<true|false>"]

[, "tagl=<string>", "tag2=<string>", ... ,"tagS=<string>"]

[, rediscoveryEnabled=<true|false>]

[, rediscoveryNewTestsAction=<logOnly|updateAndLog|ignore>]

[, rediscoveryUpdatedTestsAction=<logOnly|updateAndLog|ignore>]

[

~

14
rediscoveryDeletedTestsAction=<logOnly|suspendAndLog|updateAndLog|ignore>]
[, rediscoveryFrequency=<new value>]

Example:

device.create "deviceName=Cisco Router 01", "address=206.33.183.211", \\
"locationName=Princeton Dev Lab", "deviceType=router", "snmpCid=public", \\
"clearOnOk=true", "smartNotify=true", "showOnSummary=true" |

device.delete

Deletes configuration information for one or more devices. All associated tests for the devices are
automatically deleted as well.

device.delete <"deviceName=<regexp>" | "deviceSerial=<value>">
[, "address=<regexp>"]

[, "locationName=<regexp>"]

[, "snmpCid=<regexp>"]

[, "deviceType=<regexp>"]

device.export

16

Exports tests from one or more devices.

The device.export command is available only when logged into the BVE API server as an admin
user or superuser.

If the testName parameter is used, tests with names matching the specified regular expression are
exported. Otherwise, all tests from the specified devices are exported.

If there is name conflict, a unique name in the target department is generated. For example, if device X
from department P is exported to department Q, but there is already a device named X in Q, the
exported device is named X _imp <timestamp>. If X already exists in Q and is based on an exported
device from P, then the list of tests in device X in department Q is updated. If a single device is
specified, the newDeviceName parameter can be used to set the device name in the target
department. In this case, that device name must not already exist in the target department.
device.export "deviceName=<name |regexp>"
[, newDeviceName=<name>]
[, "testName=<regexp>"]

"accountName=<value>"

"newAccountName=<regexp>"

Examples:



BVE FlexAPI Protocol Reference
device.export "deviceName=My Devl", "accountName=My Dept",
"newAccountName=Your Dept", "newDeviceName=Your Devl"

device.export "deviceName=Router*", "testName=Packet Loss",
"accountName=My Dept", "newAccountName=Your Dept"

device.list

Lists device information based on a search criterion. Using multiple search criteria is not supported.
device.list

["deviceName=<regexp>" | "deviceSerial=<value>"]
[, "tagN=<regexp>" |

[, "parentNames=<valuel,value2,...>" ]

[

, "showLicenseCategory=<true|false>" ]

[,
"licenseCategory=<ping|simple|network|enterprise|appserver|shypervisor | mhy
pervisor|lhypervisor|xlhypervisor|hypervisor|configmgmt>" ]

The output of device.list shows the current configuration settings for one or more devices. If any
search criteria are provided, devices matching the value are included in the output. If the
showLicenseCategory parameter is specified, the device's license classification is included as well.
By default this information is omitted due to the additional queries that need to be performed to
determine this information.

Example:

"serialNumber=520003", "deviceName=my device 1", "address=172.21.8.25",
[oool

"rediscoveryEnabled=true", "rediscoveryNewTestsAction=logOnly",
"rediscoveryUpdatedTestsAction=logOnly", "rediscoveryFrequency=720",
"rediscoveryDeletedTestsAction=1logOnly"

device.move

Moves one or more existing devices and all corresponding tests from one department to another.

You must specify the source and destination departments. If a device with the same name already
exists in the destination department, the device being moved is renamed to a default obvious name in
the destination department.

device.move "deviceName=<regexp>"
"fromDepartmentName=<value>"
, "toDepartmentName=<value>"

device.resume
Resumes one or more previously suspended devices and all corresponding tests.
device.resume <"deviceName=<regexp>" | "deviceSerial=<value>">
device.status

Displays summary of devices being monitored. Tests for each device are displayed in the same
three-column manner as in the web application.

device.status

["deviceName=<regexp>" | "deviceSerial=<value>"]
[, "status=<ok|warning|critical |unknown |unreachable>" ]
[, "parentNames=<valuel,value2,...>" ]

device.suspend

Suspends one or more existing devices and all corresponding tests.

17



BVE FlexAPI Protocol Reference

device.suspend <"deviceName=<regexp>" | "deviceSerial=<value>">

device.update

Updates configuration information for one or more existing devices. If deviceSerial and
deviceName are both given, then the device name is updated.

To change the IP address of a host, you must specify the new IP address in the newaddress

parameter. An error is generated if more than one host matches the search criteria while changing the
IP address.

For rediscovery options, specify the rediscovery frequency in minutes. 720 (or 12 hours) is the
minimum value accepted by the system.

You can use the device.update command to enable rediscovery for one or more devices using the
rediscoveryEnabled=true parameter. If you do not specify action and frequency parameters,
department/global defaults values are used. If you specify action and frequency parameters without
the rediscoveryEnabled parameter, only devices that already have rediscovery enabled are
affected by the action and frequency parameters.

device.update <"deviceName=<regexp>" | "deviceSerial=<value>" |

[, "newaddress=<ip addr>"]

[, "snmpCid=<new value>"]

[, "comment=<new value>"]

L,
"deviceType=<nt|windows|unix|linux|solaris|vmware|xen|hyperv|router|switch
|firewall |slb|proxy|san|nas|vpnc|printer|wireless|other>"]

[, "parentNames=<new value,new value,..>"]

[, "clearOnOk=<true|false>"]

[, "smartNotify=<true|false>"]

[, "showOnSummary=<true|false>"]

[, "tagl=<string>", "tag2=<string>", ... ,"tagb=<string>"]

[, rediscoveryEnabled=<true|false>]
[
[
[
[

~

, rediscoveryNewTestsAction=<logOnly|updateAndLog|ignore>]
rediscoveryUpdatedTestsAction=<logOnly |updateAndLog|ignore>]
, rediscoveryDeletedTestsAction=<logOnly|updateAndLog|ignore>]
, rediscoveryFrequency=<new value>]

Examples:

~

To change the name of a device, you have to use the deviceSerial as the match, so first find the
serial number.

device.List "deviceName=[MyOldDevice]"

device.update "deviceSerial=12345" "deviceName=myNewName"

To change the IP address, you should set the newAddress value, not the IPaddress.

This following example changes the rediscoveryUpdatedTestsAction and
rediscoveryFrequency for devices that have rediscovery enabled using in the web application.
The other fields remain unchanged and devices with rediscovery disabled are not affected.
device.update "deviceName=*",
"rediscoveryUpdatedTestsAction=updateAndLog", "rediscoveryFrequency=100000"

Setting Default SNMP Query Optimization

18

Note: You can enable/disable SNMP Query Optimization when you create SNMP tests. See the Traverse User
Guide for more information on the SNMP monitor and query optimization.You can specify the default
setting for SNMP Query Optimization with the device.update command and snmpOptimize=<0|1>.

When enabled, SNMP Query Optimization increases the performance and efficiency of the SNMP monitor
and reduces Traverse-initiated network communications.



BVE FlexAPI Protocol Reference

When disabled, the DGE to stops grouping SNMP queries targeted for that device in a single packet.
Each test is executed through a new UDP packet with a single SNMP GET request. This allows
Traverse to monitor older devices that are unable to process multiple queries in a single request, or
devices that restrict packet sizes. Disabling SNMP Query Optimization adversely affects overall scalability
and should only be done when absolutely necessary.

Enter:
device.update "devicename=LAN Switch (1-6 Net)", "snmpOptimize=0"

OK 201 1 [NetworkDevice] (s) updated.

1 enables optimization and 0 disables optimization. device.11ist output indicates the setting:
device.list "devicename=LAN Switch (1-6 Net)"

OK 203 request accepted, records returned: 1

"serialNumber=270019", "deviceName=LAN Switch (1-6 Net)",
"address=10.1.6.1", "snmpCid=public", "snmpPort=161", "snmpVersion=2",
"snmpOptimize=0", [...]

deviceDependency.x

deviceDependency.create

Assigns one or more existing devices as a parent device for an existing device.

deviceDependency.create
"deviceName=<value>", "parentNames=<value,value,...>"

deviceDependency.delete

Deletes previously created device dependencies for one or more existing devices.

deviceDependency.delete
"deviceName=<regexp>", "parentNames=<value,value,...>"

Example:

deviceDependency.delete
"deviceName=*vlon*", "parentNames=ppar2137"

This command is expecting devices that have a name matching v1on and have parent ppar2137
only. If the devices have multiple parents, then you need to specify each of them using parentNames
parameter. It can be checked using deviceDependency.list devicename=v1lon command.

deviceDependency.delete "devicename=*vlon*", "parentNames=ROUTERB, \*"

This will not be successful since the command does not support the wildcard for the parentNames
parameter. One option would be to write a Perl script that uses the Zyrion: : Provisioning module
and uses ListDependency () method to collect existing dependency information for the devices in
guestion. Then, use that information to call DeleteDependency () and CreateDependency ()
methods in succession.

deviceDependency.list

Lists device dependency information based on search criteria.

deviceDependency.list
["deviceName=<regexp>" &#124; "deviceSerial=<value>"||]

dge.x

Also see the commands for DGE-extensions below (dgex.create, etc)

19



BVE FlexAPI Protocol Reference

dge.create

Creates a new Data Gathering Engine (DGE) instance.

dge.create "dgeName=<new value>"
;, "host=<new value>"

, "locationName=<new value>"

, "softLimit=<new value>"

, "hardLimit=<new value>"

dge.delete
Deletes configuration information for one or more existing DGE instances.
dge.delete <"dgeName=<regexp>" | "dgeSerial=<value>">
dge.list
Lists DGE information based on search criteria.
dge.list
["dgeName=<regexp>" | "dgeSerial=<value>"]
dge.update
Updates information for an existing DGE. If dgeSerial and dgeName are both given, the DGE name
is updated.
dge.update <"dgeName=<regexp>" | "dgeSerial=<value>">

, "host=<new value>"]

, "locationName=<new value>"]
, "softLimit=<new value>"]

, "hardLimit=<new value>"]

— — — —

dgeX.x

These commands are for DGE-extensions. Note that there is no Location parameter for
DGE-extensions. These commands are only available when logged into the API as superuser.

dgeX.create

Creates a new DGE extension.

The dgex.create command is available only when logged into the BVE API server as superuser.
dgeX.create "dgexName=<value>"
"description=<value>"
, "softLimit=<value>"
, "hardLimit=<value>"
[, "upstreamDgeName=<value>"]

The value for upstreambDgeAddress defaults to the configured host IP address of the upstream
DGE. If the upstream DGE has multiple IP addresses, make sure to set upstreamDgeAddress to the
IP address that is reachable by the DGE-extension.

Example
dgeX.create "dgexname="Cust-12" , "description=Acme Company HQ",
"softlimit=200", "hardlimit=500", "upstreamDgeName=Central-DGE-2",

"upstreamDgeAddress=192.168.10.222"

20



BVE FlexAPI Protocol Reference

dgeX.delete

Deletes a DGE extension.

The dgex.delete command is available only when logged into the BVE API server as superuser.
dgeX.delete "dgexName=<value>" | "dgexSerial=<value>"

dgeX.update

Updates an existing DGE extension.

The dgex.update command is available only when logged into the BVE API server as superuser.
dgeX.update <"dgexName=<value>" | "dgexSerial=<value>">

If both dgexName and dgexSerial are specified, only dgexName is updated.

dgeX.list

dgeX.list <"dgexName=<value>" | "dgexSerial=<value>">
event.list

Lists events for one or more devices and one or more tests configured on those devices for a certain
time frame. By specifying a certain type of event in the eventType parameter, it is possible to display
only events where the previous or current state was of that type.

event.list

["deviceName=<regexp>"]

[, "testName=<regexp>" | "testSerial=<value>"]

[, "startTime=<YYYYMMDDhhmm>"]

[, "endTime=<YYYYMMDDhhmm>"]

[, "eventType=<ok|warning|criticall|fail|unreachable|unknown>"]

[, "testType=<regexp>"]

[, "subType=<regexp>"]

Output is in the following format:

device name | device serial number | test name | test serial number |
test type | test sub type | time stamp | event duration | previous state |
new state | event message | last test result

The event duration is provided in milliseconds.

location.x

location.create

Creates a new location where one or more DGESs will be operating.

location.create "locationName=<new value>"
, "streetAddress=<new value>"

, "city=<new value>"

, "state=<new value>"

, "comments=<new value>"

location.delete

Deletes an existing location. All DGEs at that location and all associated devices/tests on those DGEs
are deleted automatically.

location.delete
<"locationName=<value>" | "locationSerial=<value>">

21



BVE FlexAPI Protocol Reference

location.list

Lists location information based on search criteria.
location.list
["locationName=<regexp>" | "locationSerial=<value>"]

location.update

Updates information on an existing location. If both 1ocationName and locationSerial are given,
the location name is updated.

location.update

[, "streetAddress=<new value>"]
[, "city=<new value>"]

[, "state=<new value>"]

[, "comments=<new value>"]

result.list

Lists test results for one or more devices and one or more tests configured for those devices for a
certain time frame.

result.list
["deviceName=<regexp>" |

"deviceSerial=<value>"]
, "testName=<regexp>" |

"testSerial=<value>"]
, "startTime=<YYYYMMDDhhmm>"]

[

[

[, "endTime=<YYYYMMDDhhmm>"]
[, "testType=<regexp>"]

[, "subType=<regexp>"]

Output is in the following format:

device name | device serial number | test name | test serial number |
test type | test sub type | time stamp | num samples | avg value | min value
| max value | current state | warning threshold | critical threshold |
sla.x
sla.create

22

Create a new SLA for a container, device or test.

sla.create slaName=name, slaType=<container|device|tests>,
calculationPeriod=<day|week|month>,
containerName=<container> |
threshhold=<percent>

[, startTime=YYYYMMDD [hhmm] ]

[, minGranularity=<minute|hour|day|week> ]

deviceName=<device> | testIDs=<tidl;tid2;tid3>,

[, comment=<string> ]
[, scheduleName=<schedule name> ]
[, permitPast=<true|false> ]

The minGranularity parameter is used to limit the drill down into statistics from the front end to the

specified level. If you want Traverse to calculate the SLA for historical data, you can specify a
startTime in the past, and set the permitPast=true

For example, assume a container called Email Container has already been created using the web
interface. To create an SLA calculated monthly for a schedule from 9 to 5, Monday through Friday:



BVE FlexAPI Protocol Reference

sla.create "slaName=email Service SLA", "slaType=container",
"calculationPeriod=month", "containerName=Email Container",
"startTime=201105150000", "threshold=98.99", "comment=SLA for Exchange
Service", "scheduleName=Business Hours"

sla.update
Update an existing SLA.

sla.update <slaName=name|slaSerial=serial>

[, newName=<string>]

[, comment=<string>]

[, threshold=<percent>]
[,minGranularity=<week|day|hour|minute>]
[, scheduleName=<value>]

Note that you cannot change the calculationPeriod of an existing SLA test.

sla.delete

sla.delete <slaName=name|slaSerial=serial>

sla.list

sla.list <slaName=name|slaSerial=serial>

sla.status

sla.status <slaName=name|slaSerial=serial>
[,calculationPeriod=<day|week|month>]
[,startTime=YYYYMMDD [hhmm] ]
[,endTime=YYYYMMDD [hhmm] ]

[, maxResults=n]

test.x

test.create

Creates new tests for an existing device.

test.create "deviceName=<new name>"

, "testType=<ping | snmp | port | external | composite | ...>"
, "subType=<based on testType>"

, "testName=<test name displayed on screen>"

, "warningThreshold=<value>", "criticalThreshold=<value>"
, "units=<string>"

, "resultMultiplier=<number>"

, "resultProcessDirective=<see table below>"

, "maxValue=<number>"

[, "actionName=<new value>"]

Some of the parameters are specific to each test type. For a detailed list of commands and different
test types, type help test.create.

resultProcessDirective

Indicates what type of calculation to perform after polling the new value. For example, when it is set to

percent, the polled value and maximum (configured) value are used to calculate percentage, which is
the final result.

23



BVE FlexAPI Protocol Reference

resultMultiplier

Allows you to modify the polled result. If the SNMP agent reports data in bytes, and you want use bits,
setthe resultMultiplier to 8. To convert KB into MB, the resultMultiplier will be 0.001. As

resultPro
cessDirec
tive
Values

0

1

Value

NONE.

PERCENT.

DELTA.

RATE.

DELTAPERCENT.

RATEPERCENT.

REVPERCENT.

STRHEX2LONG.

TIMETICKS.

Description

No post processing is done on the result

The fetched value is divided by the provisioned maximum
value to get the percent. Useful for disk utilization.

Calculate the difference between the value retrieved in the
previous test and the value retrieved in the current test.

Calculate the delta from the previous value and then divide by
the time interval between the tests to calculate the rate per
second.

Calculate the delta from the previous value, and then divide by
the provisioned maximum value.

Calculate the delta from the previous value, and then divide by
the time interval between tests as well as the provisioned
maximum value to get the percentage per second.

Calculate the “percent' and then subtract from 100 to get the
‘reverse'. Useful to convert disk full into disk free.

Convert opaque hexadecimal strings to long (e.g. in Amperion
BPC equipment).

Convert number of milliseconds since midnight Jan 1, 1970
into dd hh:mm:ss format.

another example, you can also multiply by 60 to convert rate from per second to per minute.

Traverse only supports integer values for polled results, so the results are rounded off before they are
stored in the database. You can use resultMultiplier to bypass this restriction. For example, if

you need to monitor values up to two significant digits for load average, modify the test and enter 100
asthe resultMultiplier value. You would need to update the thresholds accordingly (i.e. multiply

them by 100). Note that resultMultiplier is only applicable for SNMP and "external” tests.

maxValue

24

This is the maximum post-processed value (not the max of the SNMP counter/gauge which is typically
2732). So, if you are measuring the traffic rate of an ethernet port, which has a test unit of Kbps, the
max value should be 10,000. When measuring disk space utilization, it holds the maximum size for the
disk (partition) as reported by the SNMP agent, which will be used for percentage calculation. For

creating a ping test

test.create "deviceName=<new value>"
"testType=ping"

, "subType=<pl|rtt>"

"testName=<new value>"
, "interval=<new value>"]

, "criticalThreshold=<new value>"]

[
[, "warningThreshold=<new value>"]
[
[

, "actionName=<new value>"]

Example:



BVE FlexAPI Protocol Reference

test.create "deviceName=Cisco Router 01", "testType=ping", "subType=rtt",
"testName=Cisco-Router-0l-ping-rtt", "warningThreshold=250",
"criticalThreshold=1500", "actionName=email-NOC"

Creating an SNMP test

test.create "deviceName=<new value>"
"testType=snmp"

, "subType=<new value>"

"testName=<new value>"

, "interval=<new value>"]

"warningThreshold=<new_ value>"]

, "criticalThreshold=<new value>"]

, "snmpOId=<new value>"

, "resultMultiplier=<new value>"

A — — N
~

, "resultProcessDirective=<new value>"
, "maxValue=<new value>"
[, "actionName=<new value>"]

Creating a port test:

test.create "deviceName=<new value>"
, "testType=port"
"subType=<http|https|smtp|pop3|pop3s|imap|imaps|nntp|ftp|advanced>"
"testName=<new value>"
"interval=<new value>"]
"warningThreshold=<new_ value>"]
"criticalThreshold=<new value>"]
"port=<new value>"]

"url=<new value>"]
"loginName=<new value>"]
"password=<new_ value>"]
"actionName=<new value>"]
"sendString=<new value>"]
"expectString=<new value>"]

Creating an external test:

test.create "deviceName=<new value>"
, "testType=external"

, "testName=<new value>"

, "interval=<new value>"

, "warningThreshold=<new value>"

, "criticalThreshold=<new value>"

[, "actionName=<new value>"]

~

~ N~ 0~

~

N~ SN S~ N

L R B B I e B R i I e B ]
~

~

test.delete

Deletes configuration information for one or more existing tests. If a test name is given, then a device
name is required.

test.delete "deviceName=<regexp>"

<"testName=<regexp>" | "testSerial=<value>">
[, "testType=<regexp>"]
[, "subType=<regexp>"]

Note: If a test is part of a composite test, the BVE API does not delete the test. See the Traverse User
Guide for more information about composite tests.

25



BVE FlexAPI Protocol Reference

test.list
Displays test configuration parameters for tests matching search criteria.
test.list
["deviceName=<regexp>"]
[, "testName=<regexp>" | "testSerial=<value>"]

[, "testType=<regexp>"]

[, "subType=<regexp>"]

Sample output. The output is slightly test dependent.

"serialNumber=40003", "testName=Disk /boot Space Util", "testType=snmp",
"subType=disk", "deviceName=localhost", "interval=300",
"warningThreshold=75", "criticalThreshold=90", "shadowWarningThreshold=75",

"shadowCriticalThreshold=90", "slaThreshold=75", "actionName=None",
"suppressed=false",

"isSuspended=false", "resultProcessDirective=1","resultMultiplier=1.0", "max
Value=101089",

"snmpOid=.1.3.6.1.2.1.25.2.3.1.6.2"

To get test names for a device, use the following command:
test.list "deviceName=xyz", "testName=*"

test.resume

Resumes regular testing for one or more previously suspended tests.

test.resume <"deviceName=<regexp>" | "deviceSerial=<value>">
<"testName=<regexp>" | "testSerial=<value>">

[, "testType=<regexp>"]

[, "subType=<regexp>"]test.status

Displays current status of the tests for the device specified. The search can be restricted to test names

with certain pattern, or severity.

test.status "deviceName=<value>"

[, "testName=<regexp>" | "testSerial=<value>"]

[, "status=<ok|warning|critical|unknown |unreachable>"]

Output is in the following format:

test serial number | current state | avg value | warning threshold |
critical threshold | time stamp | time in state | test name

where the time stamp and time in state are provided in YYYYMMDDhhmmss format. Note that
the test name is displayed in the last field, and test serial number is in the first field.

test.suppress

Suppresses the test result of one or more tests. When suppressed, the severity/state of the test will not
affect the status displayed for the device/department. When test severity changes—for example, from
Warning to Critical or from Unknown to Unreachable—the suppression is reset automatically.
test.suppress <"deviceName=<regexp>"

<"testName=<regexp>" | "testSerial=<value>">
[, "testType=<regexp>"]
[, "subType=<regexp>"]

test.suspend

26

Suspends testing of one or more existing tests.



BVE FlexAPI Protocol Reference

test.suspend <"deviceName=<regexp>"
<"testName=<regexp>" | "testSerial=<value>">

[, "testType=<regexp>"]

[, "subType=<regexp>"]

test.update

Updates configuration information for one or more existing tests.
test.update <"testName=<regexp>"
"deviceName=<regexp>"

"testType=<value>"

"subType=<regexp>"]

"interval=<new value>"]
"warningThreshold=<new_ value>"]
"criticalThreshold=<new value>"]
"actionName=<new value>"]

"maxValue=<new value>"]

"units=<new value>"]

"testSerial=<value>"]
"resultProcessDirective=<value>"]
"thresholdType=<auto|ascend|descend|discrete|-1|1|2|3>"]
"resultMultiplier=<value>"]
"userName=<value>"]
"resultProcessDirective=<value>"]

To do a bulk update of the warning and critical thresholds for all routers named router, use the
following command:

N~ SN N N~ 0~

~

N SN N N~

e e N e T e I e R e B B e B N B |
~

~

test.update "devicename=*router*", "testname=Round Trip*", "testtype=ping",
"subtype=rtt", "warningthreshold=150", "criticalthreshold=250"

To modify a test name for a device named "abc-switch", first use the test.list
command to obtain the serial number for the test, and then use the following
command: test.update "devicename=abc-switch", testname="New Test Name",
"testSerial=123456", "testtype=ping"

user.x

user.create

Creates a new user (login id) in a specific department.

user.create "role=<read-only | read-write>"
, "loginName=<new value>"

, "firstName=<new value>"

, "lastName=<new value>"

, "emailAddress=<new_value>"

, "departmentName=<new value>"
, "password=<new value>"

, "passwordVerify=<new value>"
"phoneDay=<new value>"

, "phoneEvening=<new value>"]
, "phoneMobile=<new value>"]

, "pager=<new value>"]

, "timeZone=<timezone value>"]

— — — — Y

Example:

user.create "role=read-only", "loginName=jsmith", "firstName=John",
"lastName=Smith", "emailAddress=jsmith@acme.com", "departmentName=roUsers",
"password=h4ckthls!", "passwordVerify=h4ckthls!", "phoneDay=609-555-1212"

27



BVE FlexAPI Protocol Reference

user.delete

Deletes a user/login id from a specific department.
user.delete <"loginName=<regexp>" | "loginSerial=<value>">

user.list

Lists user information based on search criteria.

user.list

["loginName=<regexp>" | "loginSerial=<value>"]
[, "departmentName=<regexp>"]

[, "firstName=<regexp>"]

[, "lastName=<regexp>"]

user.represent

Masquerades as a specific user. This command is only available to admin users. Once executed, the
permissions and privileges of the specified user will be inherited and any new department, device and
tests created will be created on behalf of the specified user.

user.represent "loginName=<value>"

user.update

Updates information for an existing user/login id. User login names cannot be updated, so if both
loginSerial and loginName are given, the 1oginName is ignored.

user.update <"loginName=<regexp>" | "loginSerial=<value>">
[, "role=<read-only | read-write>"]
, "firstName=<new value>"]

, "lastName=<new value>"]

, "emailAddress=<new value>"]
"departmentName=<new value>"]
"password=<new_ value>"]
"passwordVerify=<new value>"]
"phoneDay=<new value>"]
"phoneEvening=<new value>"]
"phoneMobile=<new value>"]
"pager=<new_value>"]

, "timeZone=<new value>"]

~

~

~ N 0~

~

~

userClass.x

userClass.create

Creates a user group.

userClass.create "groupName=<new value>"
[, "comment=<new value>"]

userClass.delete

Deletes an existing user group.

userClass.delete
"groupName=<regexp>" | "userClassSerial=<value>">

userClass.list

Lists user group information based on search criteria.

28



BVE FlexAPI Protocol Reference

userClass.list
["groupName=<regexp>" | "userClassSerial=<value>"]

userClass.update

Updates user group information. If both groupName and userClassSerial are given, then the user
group name will be updated with groupName.

userClass.update
<"groupName=<regexp>" | "userClassSerial=<value>">
[, "comment=<new value>"]

Further Examples

Creating a New Device and Test
% telnet bve host 7661
Trying 127.0.0.1...
Connected to localhost.
Escape character is '~]"'.
OK 200 Traverse BVE TCP Server v5.0 ready
LOGIN zyrion/zyrion
OK 201 request accepted and processed, ready for next request
DEVICE.CREATE "devicename=my device", "address=192.168.123.25",
"devicetype=unix", "snmpcid=public", "comment=my workstation",
"locationName=Denver Office"

OK 201 request accepted and processed, ready for next request

TEST.CREATE "devicename=my device", "testname=my test", "testtype=external",
"subtype=external", "interval=15m", "units=xyz", "warningThreshold=55",
"criticalThreshold=85", "maxvalue=100", "resultProcessDirective=0",

"resultMultiplier=1"
OK 201 request accepted and processed, ready for next request
[[ 1f you wanted to check the newly created test ]]

TEST.LIST "testname=my test", "devicename=my device"
OK 203 request accepted, records returned: 1

"serialNumber=470003", "deviceName=my device", "testName=my test",
"testType=external", "subType=external", "interval=900",
"warningThreshold=55", "criticalThreshold=85", "actionName=None",
"suppressed=false", "isSuspended=false", "resultProcessDirective=0",

"resultMultiplier=1.0", "maxValue=100"
QUIT

OK 299 Logging out.

29



BVE FlexAPI Protocol Reference

Creating an Advanced Port Test

test.create "devicename=test device", "testname=SSH Service",
"testtype=port", "subtype=advanced", "port=22", "expectstring=SSH",
"interval=180", "warningthreshold=2", "criticalthreshold=5",
test.update "devicename=test device", testname=SSH Service",
"testtype=port", "port=8022", "sendstring=foo", "expectstring=bar",

"warningthreshold=3"

Creating a New Test Container and Placing It in a New
Device Container

container.create "serviceName=All RTT Tests", "serviceType=test",
"memberListMethod=manual", "memberList=*", "testListMethod=manual",
"testName=*", "testType=ping/rtt", "comment=Response Time to Remote Sites",
"displayComment=true"

OK 201 request accepted and processed, ready for next request

container.create "serviceName=All Devices", "serviceType=device",
"memberListMethod=manual", "memberList=#All RTT Tests"

OK 201 request accepted and processed, ready for next request
container.members "serviceName=All Devices"

OK 203 request accepted, records returned: 1

"serviceName=All Devices", "serialNumber=300003", "memberType=container",
"memberName=All RTT Tests", "memberStatus=Unreachable", "deviceName=All RTT
Tests", "deviceSerialNumber=300000", "accountName=My Company",

"accountSerialNumber=49"

30



Chapter 2

Traverse REST API

In This Chapter

REST APL OVEIVIEW ...ttt ettt e e et e e et e s e et e s e e e s e s saaeesebaesenabaeaes
REST COmMMAaNd FOIMMATL......coooeuiiiiiie ettt e e et e e e e e e s st e e s et e s eeabaeees
REST COMMANAS IN TIAVEISE ..uutiiieieieieie e e e e et e e et e e s et e s e e e s e s s st e e ssbaeeesabaseaes

31



Traverse REST API

REST API Overview

The Traverse Representational State Transfer (REST) provides another way to access all the
functionality available in the BVE FlexAPI. All the commands and responses that are present in the
FlexAPI are available using the REST protocol as well.

What is REST ?

REST (REpresentational State Transfer) is an approach for building services that make specific
resources available at a URL. A REST service has well defined operations for manipulating the
resource. Typically, these operations include reading, writing, editing, and removing.

REST Command Format

To access the REST API, connect to the Traverse Web Application URL with the additional path as
described below:

REST Command Format
<protocol>://<host>:<port>/api/rest/command/<command>?<params>

where:

<protocol> Either http or https, depending on how your Traverse webapp is configured.
<host> Hostname or IP address for your Traverse webapp.

<port> Normally not required. Use when running Traverse on a non-standard path.
<command> The REST APl commands.

<params> Any parameters required by the <command>.

For example:

http://traverse.my.domain/api/rest/command/login?john/mypassword
To access the WADL:

http://<host>:<port>/api/rest? wadls& type=xml
https://<host>:<port>/api/rest? wadlé& type=xml

REST Commands in Traverse

All BVE commands are supported. All responses are exactly similar in format and data to the BVE
FlexAPI.

Login
In BVE
login user/pass
In REST
http://host:port/api/rest/command/login?user/pass
REST Response
OK 201 request accepted and processed, ready for next request

32



Traverse REST API

WhoAml

In BVE

whoami

In REST
http://host:port/api/rest/command/whoami
REST Response

OK 203 request accepted, records returned: 1

"serialNumber=1870003", "loginName=john", "departmentName=Zyrion, Inc."
"role=Read-Write", "lastName=smith", "firstName=john", "emailAddress=",
"timeZone=GMT", "locale="

4

Logout
In BVE
logout
In REST
http://host:port/api/rest/command/logout
REST Response
OK 299 Logging out.

Devices.List
In BVE

devices.list "deviceName=*U*", "address=192.168.10.*"
In REST

http://host:port/api/rest/command/devices.list?deviceName=*U*&address=192.
168.10.*

REST response

OK 203 request accepted, records returned: 9

"serialNumber=280261", "deviceName=Primary Distribution Switch",
"address=192.168.10.251",

"deviceType=Network Switch", "parentNames=Cisco Router",
"snmpCid=in72days36move", "snmpPort=161",

"snmpVersion=2", "snmpOptimize=1", "agentBatchMode=1", "agentPort=161".....

33






Chapter 3

External Data Feed (EDF) Reference

In This Chapter

OVBIVIBW . ...ttt e ettt e e e e e sttt et e e e e e e e s a s be et e e ee e e e s aassbeeeeeaeeeaaannnbeeeeaaeeesnnnbnreees 36
CoNNECHING TO TNE SEIVET ...ttt e et e s sreee e 36
Disconnecting From the SEIVEN ...t 36
Command/Reply Formatting and Commands............cooooiiiiiiiiiieeenn e 36
ClIeNt COMIMANTS .....eeiiiiiiiee ittt e s e e s e e s sab e e e s sabr e e e e sreeee e e 37
TemMPIates fOr EDF TESIS....uuiiiii it e e e e e st r e e e e e s s snarareeeeaeeeeaanns 39
EDF Versus PlUGQiN MONITOIS ........ccciiiiiiiiiieeee e s cciiee e s e e e e e st e e e e e e s e nnnraaneaaee s 39
e T 4] o] [PPSR 40

35



External Data Feed (EDF) Reference

Overview

The External Data Feed (EDF) allows external data to be sent to and processed by Traverse as
though it had been collected by Traverse itself. Any external tool can send results and events for any
existing test, and the result/event will be processed as if a Traverse monitor had polled the result.

The EDF process is accessed via a text based protocol over a TCP socket. Protocol messages can be
sent from programs written in C, Java, Perl or any other language.

Typically, you should provision the test with a type of 'external’ (using the Web interface or the BVE
Server) before inserting test results via the EDF server, but you can also use this process to enter data
for any existing test using the test's serial number.

It is recommended that the Traverse Perl API be used to access the EDF instead of a direct telnet
connection for consistency.

Connecting To The Server

Communication with the EDF server consists of two phases: a connection establishment phase and a
command-execution phase. During the connection establishment phase the remote client provides
authentication information to the server in the form of a login id, and the corresponding password.
Once the authentication information has been verified, all subsequent commands sent to the server
are executed with the permissions and privileges of the specified user.

Note that the login information provided to the EDF Server is the username and password specified in
the dge.xml configuration file and not the web user login and password. On login, the user can insert
data for all the devices and tests in Traverse.

Once the connection establishment phase has been completed, the client application may send one
command at a time and wait to receive a reply from the server, possibly consisting of multiple lines of
output.

A client application establishes a connection to the EDF Server by connecting to a TCP/IP socket,
using the hostname/IP of the server that is running the monitor, and a pre-defined port number. The
default port number is 7657. Upon establishment of the TCP session, the server will greet the client
with a welcome message following the rules outlined below (page 36). If the server is ready to accept data,
it will respond with OK Traverse External Data Feed Server Ready

at which point the remote client can send authentication information. If the server is unavailable, an
error message is printed in the form ERR reason and the server disconnects the client.

Disconnecting From the Server

When the client application disconnects from the EDF Server, it is recommended that the client issue a
disconnect request instead of simply closing the socket connection. This will allow the server to
perform proper cleanup before disconnecting the session. See Client Commands (page 37).

Also if the EDF Server does not receive anything from the client for an extended period of time, the
session will timeout and disconnect the client. The default timeout is currently 2 minutes and can be
changed by editing dge . xm1.

Command/Reply Formatting and Commands

The commands sent by a client and the responses sent back by the server must adhere to the following

36



External Data Feed (EDF) Reference

formatting conventions.

Client Command Format

= Each client command is composed of a single line of text terminated by a newline character. A
carriage return followed by a newline (\ z\n) is considered to be the same as a newline character

(\n) alone.

= Client commands may or may not require additional parameters. Each parameter consists of
values, separated by 'pipe’ symbol (|). Example command name valuel [ | value2 |
value3 ... ].

= A pipe symbol ( | ) is not permitted as part of the value.

= For each client command, the server responds with a response code indicating success or failure,
and optionally includes some descriptive text indicating the actions taken.

= Command names are not case sensitive.

= Parameters/values for any command must appear in exact order following the command. If a
value is not applicable or existent for a particular command, an empty value ( | | ) should be
provided.

Server Response Format

The server always responds to client initiated commands/requests with text in the following format:
<status code> optional informative text
where status code is one of the following:

= OK, which indicates the command/request was successful.
= ERR, which is indicative of failure to execute the request.

Client Commands

Login
Provides authentication information to the server. This username and password are specified in the
dge . xml configuration file.
Login <login id> | <password>

Logout | Quit
Ends a login session.
session.Logout

Result.insert
Inserts a result value for an existing test into the database. The Result.insert must be submitted to
the EDF listener on the DGE that is monitoring the device.

Result.insert device name | device addr | test name | test serial | date time
| result value

where
* device name is the descriptive name that was used when the device was provisioned.

= device ip is the fully qualified address or ip address that was used when provisioning the
device.

* test name, along with device name and device ip are used to obtain the unique serial
number for the test if test serial is not provided. This is the descriptive test name that was
used during provisioning.

= test serial is the unique serial number of the test, which should be already provisioned. If no
serial number is provided, the device name, address and test name (if provided) will be used to

37



External Data Feed (EDF) Reference

obtain the test serial number. If no test matching the serial number can be found, the result value
will be ignored.

* date time is provided either in yyyy.mm.dd-hh:mm, or nnnnnnnnnn format where
nnnnnnnnnn iS the number of seconds since 1970. If the date and time are not provided, or a
value of 0 is used, current system time in GMT is used. Because of the real-time aggregation, you
must provide a timestamp newer than the last data value for the test.

= result value is the value which should be inserted into the database. The provided result will
be multiplied by the result multiplier, and processed in the manner set via process-directive, both
set during the creation of the test.result value may be set to several special values to
represent differing states in Traverse:

-1 UNKNOWN Indicates an unexpected, or unknown test result

-2 FAILED Used when a test fails, such as an http test returning a 500 code
-3 UNREACHABLE

-4 SUSPENDED Test is not being run

Example

38

The device and test need to be created in Traverse using either the web interface (under the
Advanced Tests section) or the BVE Server. The testType should be setto external for EDF tests.

% telnet bve host 7661
OK 200 Traverse BVE TCP Server v5.0 ready

LOGIN traverse/traverse
OK 201 request accepted and processed, ready for next request

DEVICE.CREATE "devicename=my device", "address=192.168.123.25",
"devicetype=unix", "snmpcid=public", "comment=my workstation",
"locationName=Denver Office"

OK 201 request accepted and processed, ready for next request

TEST.CREATE "devicename=my device", "testname=my test",
"testtype=external", "subtype=external", "interval=15m", "units=xyz",
"warningThreshold=55", "criticalThreshold=85", "maxvalue=100",
"resultProcessDirective=0", "resultMultiplier=1"

OK 201 request accepted and processed, ready for next request

QUIT

Now connect to the EDF server on port 7657 on the DGE that is monitoring the device. Use the
username and password in the dge . xm1 configuration file, which is different from the one we used to
access the BVE Server in the first step. Note that we are not using the test serial number and are also
specifying the timestamp as 0 which indicates use current date and time.

% telnet dge host 7657

OK Traverse External Data Feed Server Ready

login edfuser|fixme

OK

result.insert my device | 192.168.123.25 | my test | | 0 | 25

OK



External Data Feed (EDF) Reference

QUIT

OK Received logout - bye
To view the newly inserted test result via BVE Server:

% telnet bve host 7661
OK 200 Traverse BVE TCP Server v5.0 ready

login zyrion/zyrion
OK 201 request accepted and processed, ready for next request
RESULT.SEARCH "devicename=my device", "testname=my test", "starttime=NOW"

OK 203 request accepted, records returned: 1
my device|470000|my test|470003|external|external|20030506100124(1(25|25]2
5|0k |55|85

QUIT

OK 299 Logging out.

Templates for EDF Tests

You can set up templates for EDF tests. If you create an XML configuration file under the
plugin/monitors directory my edf test.xml and restart the web application and DGE
components, you will see the defined tests in the Administration > Devices > Tests > Create New
Advanced Tests > External Data Feed (API) section. You can create additional tests with other names
with same sub-type.

<monitor type="external">

<testtype>

<displayName>Sample EDF test</displayName>
<displayCategory>application</displayCategory>
<subType>edf 1</subType>

[]

</testtype>

</monitor>

Note that the monitor type is set to external.

EDF versus Plugin Monitors

Tests from a plugin monitor are executed at the specified interval by the DGE. In contrast, the DGE
does not perform any tasks for EDF tests. The DGE expects to receive test results from an external
data source (script, application) at specific intervals via a TCP socket. The connecting application will
need to following the EDF API protocol to communicate with the DGE. The EDF monitor is useful when
the metric to be monitored is on a different host that is not accessible from the DGE via standard
(SNMP, WMI) or proprietary (IP based) methods. The EDF API is also scalable to a larger extent
compared to plugin monitors since the remote host can insert results for multiple tests over a single
TCP session.

39



External Data Feed (EDF) Reference

Examples

Powershell Script
Communicate to Cisco Router using EDF

40



External Data Feed (EDF) Reference

Param (

[parameter (position=0,Mandatory=$true) ] [validatenotnull ()] [String] $devicen
ame,

[parameter (position=1,Mandatory=Strue) ] [validatenotnull ()] [String] Sdevicei
1

[parameter (position=2,Mandatory=S$true) ] [validatenotnull ()] [String] S$Stestnam
e,

[parameter (position=3,Mandatory=$true) ] [validatenotnull ()] [String] $Sedfcoun
ter
)
function readResponse {
while ($stream.DataAvailable) {
Sdatalength = $stream.Read ($Sbuffer, 0, 1024)
Write-Host $encoding.GetString ($buffer, 0, $datalength)
}
}
function insert-result
{
Begin
{
## Open the socket, and connect to the computer on the specified port
$socket = new-object System.Net.Sockets.TcpClient ("192.168.10.21", 7657)
if ($socket -eqg S$null) { return; }
Ssocket.SendTimeout = 10
Ssocket.ReceiveTimeout = 10
Sstream = S$Ssocket.GetStream/()
Swriter = new-object System.IO.StreamWriter S$stream
## Log into the EDF server
Swriter.WritelLine ("login edfuser | fixme")
Swriter.Flush ()
Start-Sleep -m 1000
readResponse (Sstream)
## Insert test result
Swriter.WritelLine ("result.insert $Sdevicename | $SdeviceIP | StestName |
0 | $edfCounter")
Swriter.Flush ()
Start-Sleep -m 1000
readResponse (Sstream)
## Log out of the server
Swriter.WriteLine ("logout")
Swriter.Flush ()
## Close the streams
Swriter.Close ()
Sstream.Close ()
}
}
Sbuffer = new-object System.Byte[] 1024
Sencoding = new-object System.Text.AsciiEncoding
insert-result

41






Chapter 4

Traverse Perl API

In This Chapter

OVBIVIBW . ...ttt e ettt e e e e e sttt et e e e e e e e s a s be et e e ee e e e s aassbeeeeeaeeeaaannnbeeeeaaeeesnnnbnreees 44
Zyrion::ExternalData - EDF AP .........oiiiiiiiiii ettt 44
ZyrioN:IMESSAge - ISM AP ... 46
Zyrion::Provisioning - BVE AP ...t 47
GO IO MY .. 51
FUMNEE EXAMPIES ..ottt e e e s e e e e e e e s e e e e e e e e s e nnnraeeeaeee s 51

43



Traverse Perl API

Overview

The Traverse Perl API provides a powerful interface to the BVE, EDF and ISM servers. This APl can
be used to interface with other existing provisioning systems, custom monitors, etc. without worrying
about the underlying connection and other protocols.

Zyrion::ExternalData - EDF API

This Perl module provides a programmatic interface into the monitoring framework of Traverse using
the External Data Feed (EDF) API. It can be used to connect to a remote server (DGE), create an
authenticated session, and insert test results for existing (previously provisioned) tests.

new

Create anew Zyrion:: [ExternalData] object.

use ZzZyrion gw([ExternalDatal) ;

my Sobj;

my Shost name or ip = "192.168.10.131";
my Stcp port = "7657";

my $login id = "edfuser";

my $login password = "fixme";

my Sdebug = 1;

Sobj = Zyrion:: [ExternalData] \->new (

Host => S$host name or ip,

Port => Stcp port,

DEBUG => $debug) ;
This is the constructor for Zyrion: : [ExternalData] objects. A new object is returned on success.
The $1ogin idand $login password parameters can be omitted and specified during the Login
method. The object is created with remote host address and port information, but no connection is
made to the remote host when this method is called. The new object returned is given the following
defaults in the absence of corresponding named arguments:

= The default Host is 1ocalhost.
= The default Portis 7657.

[GetErrorMsg]

Retrieve error information from last operation.
Serror = $Sobj->[GetErrorMsg]
If any previous methods have failed, this method will return relevant information, if available.

Login

44

Log in to the Traverse EDF server.

my Sreturn value = Sobj->Login (
User => $login id,

Password => $login password,
Timeout => S$timeout secs);

This method opens a TCP connection to $tcp port on $host name or ip, as defined using the

new method. If either the $1ogin idargumentorthe $login pass argumentis missing, the values
specified in the new method (if any) are used. The username and password for the EDF server are



Traverse Perl API

different from those configured into the provisioning server. A special EDF user, specific to each DGE,
is configured via the etc/dge . xm1 configuration file.

An optional named argument is provided to override the current timeout setting. On timeout or other
connection errors, the return value is 0 and details on the error are available via the GetErrorMsg
method. On success, a hon-zero return value is provided.

Logout
Log out of the Traverse EDF server.
Sreturn value = $obj->Logout;

This method sends a logout command to the Traverse EDF server and closes the already established
TCP connection to $host name_or_ip, which was defined using the new method. On timeout or
other connection errors, the return value is 0 and details on the error are available via the
GetErrorMsg method. On success, a non-zero return value is provided.

[InsertResult]

Sreturn value = Sobj->[InsertResult] (

deviceName=>Sdevice name,

deviceAddr=>"Sdevice fgdn or ip",

dateTime=>time,

testName=>"' [ExtTest]"',

result=>Svalue to insert,

extraInfo=>$additional info);

Refer to&nbsp; [External Data Feed (EDF) Reference on page
51|file://share/Documents/Documentation/FrameMaker-Docs/TechPubs55/Dev%20G
uide/HTML/Traverse%20Developers%20Guide—-4-1.html#wpl083882] &nbsp; for
explanations of the parameters and valid values.

Example: Connect, Log In, Insert Test Result, Log Out

The following example creates a connection to 1localhost (default port), logs in, inserts a result for a
test named sample test on the device with IP address 192.168.200.50 and name my server
into the DGE database, and logs out.

Note: You should use a test name, device address, and device hame appropriate to your installation. You
may also need o change the Login user and password if they have been changed from the defaults.

use zZyrion gw([ExternalDatal) ;

my $obj = new Zyrion::[ExternalData] (Host=>"localhost");
my S$return value = Sobj->
Login (User=>"edfuser", Password=>"fixme") \|\|

die "ERROR: ", S$obj->[GetErrorMsg], "\n";
$obj—>[InsertResult](deviceName:>"my_server",
deviceAddr=>"192.168.200.50",

dateTime=>time,

testName=>'sample test',

result=>100,

extralInfo=>"'needs immediate action') \|\]
print "ERROR: ", $obj->[GetErrorMsg], "\n";
Sobj->Logout;

Note that the optional parameter testSerial was not provided, so the server will use deviceName,
deviceAddr and testName to uniquely identify the test.

45



Traverse Perl API

Zyrion::Message - ISM API

This Perl module provides a programmatic interface into the messaging framework of Traverse using
the Input Stream Monitor (ISM) API. It can be used to connect to a remote server (DGE), create an
authenticated session, and insert fixed format or free-form messages (events) against existing
(previously provisioned) devices.

new
Create a new zyrion: :Message Object.

use zZyrion qgw (Message) ;
Sobj = new Zyrion::Message (
[DEBUG => <O\ [|1>]|];

This is the constructor for Zyrion: :Message objects. A new object is returned on success. The
$login idand $login password parameters can be omitted and specified during the Login
method. The object is created with remote host address and port information, but no connection is
made to the remote host when this method is called. The new object returned is given the following
defaults in the absence of corresponding named arguments:

= The default hostis 1ocalhost.
= The default portis 7659.

[GetErrorMsg]

Retrieve error information from last operation.
Serror = $Sobj->[GetErrorMsg]
If any previous methods have failed, this method will return relevant information, if available.

Login
Logs in to the Traverse ISM server.
Sreturn value = $obj->Login( );

This method opens a TCP connection to $tcp_port on $host name or ip, as defined using the
new method. If either the $1ogin idargumentorthe $login pass argumentis missing, the values
specified in the new method, if any, are used. The username and password for the ISM server are
different from those configured into the provisioning server. A special ISM user, specific to each DGE,
is configured via the etc/dge . xml configuration file.

An optional named argument is provided to override the current timeout setting. On timeout or other
connection errors, the return value is 0 and details on the error are available via the GetErrorMsg
method. On success, a non-zero return value is provided.

Logout
Logs out of the Traverse ISM server.
Sreturn value = $obj->Logout;

This method sends a logout command to the Traverse ISM server and closes the already established
TCP connection to $host name or ip, which was defined using the new method.

On timeout or other connection errors, the return value is 0 and details on the error are available via the
GetErrorMsg method. On success, a non-zero return value is provided.

46



Traverse Perl API

[InsertMessage]
Sreturn value = $Sobj->[InsertMessage] (
[severity => <"ok"|"warning" |"critical">, ]
) ;
or,
Sreturn value = Sobj->[InsertMessage] ("free-form text to insert");

The first form of the method inserts a message specific for the specified device into the system for
further processing. The second method forces the system to match the message against all configured
regular expression patterns (ruleset). If there is a match, appropriate severity is set and actions are
triggered.

See the the Message Handler for Traps and Logs chapter in the Traverse User Guide for explanations
of the parameters and valid values for the first method.

Example: Connect, Log In, Insert Message, Log Out

The following example creates a connection to localhost (default port), logs in, inserts a message
for the device with IP address 192.168.200.50 into the DGE database, and logs out.

use Zyrion qw (Message) ;

my Sobj = new Zyrion::Message (Host=>"localhost");
my Sreturn value = Sobj->
Login (User=>"ismuser", Password=>"fixme") \|\|

die "ERROR: ", S$obj->[GetErrorMsg], "\n";
Sobj->[InsertMessage] (deviceName=>"my server",
deviceAddr=>"192.168.200.50",

dateTime=>time,

severity=>'warning',

Message=>"this is a test") \|\]

print "ERROR: ", $obj->[GetErrorMsg], "\n";
Sobj->Logout;

Zyrion::Provisioning - BVE API

This Perl module provides a programmatic interface into configuration and historical performance data
of Traverse using the Business Visibility Engine (BVE) API. It can be used to connect to a remote
server (BVE), create an authenticated session, and perform create/delete/update tasks on various
Traverse objects (user, device, test, etc.), as well as get real-time test details and reports.

The detailed list of commands and parameters expected by the BVE socket server is detailed in BVE
FlexAPI Protocol Reference.

new

Create anew Zyrion: : Provisioning object.
Sobj = new Zyrion::Provisioning (
\ [DEBUG => <0\ |[1>);

This is the constructor for Zyrion: : Provisioning objects. A new object is returned on success.
The $login idand $login password parameters can be omitted and specified during the Login
method. The object is created with remote host address and port information, but no connection is
made to the remote host when this method is called. The new object returned is given the following
defaults in the absence of corresponding named arguments:

= The default host is localhost.

= The default portis 7661.

47



Traverse Perl API

CreateX, ListX, UpdateX, DeleteX, SuspendX, ResumeX,
ExporiX, MoveX

Sreturn value = $obj->CreateX (
These methods allow manipulation of different Traverse objects (X). Valid objects include the
following:

= Action

= [AdminClass]

= Container

= Department

= Dependency

= Device

= DGE

= Location

= Test

= User

" [UserClass]
The parameters for each object and method combination are different. Refer to BVE FlexAPI Protocol
Reference (page 4) for valid parameters. Not all methods are applicable to all objects. For example, a
Device object can be suspended, so the SuspendDevice () method is valid, but a Location object
cannot be suspended, so there is no SuspendLocation () method.
On error, for all methods, the return value is 0 and details on the error are available via the
GetErrorMsg method. On success, a non-zero return value is provided. Results for ListX methods
are stored in an internal array and accessed using the GetResul tRef method.

GetContainerMembers

Sreturn value = $Sobj->[GetContainerMembers] (

This method returns a list of objects inside one or more containers. For a device container, the list may
contain devices and/or other (nested) containers. For a test container, the list will contain tests and the
device/department of those tests. The GetResultRef method should be used to access the data.
Since a single container will most likely have multiple members, the parameters will be returned in an
array, as in the following example:
Sresult ref = Sobj->[GetResultRef] ();
foreach $serial num (keys ${ S$result ref }) ({
Snum members = scalar (@{ S$result ref->{$serial num}->{membername} })
foreach $Sthis member (0 .. ($num members - 1)) {
foreach Sobject param (keys %{ S$result ref->{$serial num} }) {
Sparam value = Sresult ref->{$serial num}->{S$object param}[];

}

}

GetResultCount

48

Return the number of objects in the result buffer.

Sresult count = $obj->GetResultCount;

This method provides a count of the number of objects that were found in the result of an earlier
List<object> method (see CreateX, ListX, UpdateX, DeleteX, SuspendX, ResumeX
ExportX, MoveX). Note that if the result of the Li st<object> method returned results in bulk format
(e.g. ListResult or ListEvent), this method will always return 0 since the results cannot be



Traverse Perl API

accessed using the GetResultRef method. Instead, look at the size of the array returned for the
GetResultSet method

GetResuliRef

Returns a pointer to the search result buffer.
Sresult ref = Sobj->[GetResultRef] ();
foreach $serial num (keys %{ Sresult ref }) {

foreach Sobject param (keys %{ S$result ref->{S$serial num} }) {

Sparam value = Sresult ref->{$serial num}->{Sobject param};

}
}
This method provides a reference to the internal search buffer for objects that were found in the result
of an earlier List<object> method (see CreateX, ListX, UpdateX, DeleteX, SuspendX
ResumeX, ExportX, MoveX). Each List<object> method stores results in the same internal buffer,
so you should store or process the results of one search before executing a new search.
Search results are stored in double-hashed arrays, where the key for the first hash is the serial number
of each object that was found, and the next hash has the parameter name as the key. One entry in the
result buffer from a ListDGE method may have the following format:
Sresult ref->{<serial number>}\->{dgename} = "dge0l.eng"
\->{locationname} = "Default Location"
\->{host} = "my server"
\->{testcount} = 15
\->{softlimit} = 15000
\->{hardlimit} = 20000
\->{serialnumber} = nnn

All parameter names (key for second hash) will be in lower case.

GetResultSet

Return the results of a bulk search.

@result set = Sobj->[GetResultSet] ();
foreach Sresult item (Q@result set) {

Sparam value = (split(/\|/, Sresult item)) [n];
}

This method provides a copy of the results stored in an internal search buffer for objects that were
found in the result of an earlier List<object> method that returned results in bulk format (" | "-
separated list). Each List<object> method stores results in the same internal buffer, so you should
store or process the results of one search before executing a new search.

GetXStatus

Sreturn value = $Sobj->GetXStatus (

These methods allow retrieval of current overall health for monitored objects (X). Valid objects include
the following:

= Container
= Device
= Test

Login

Logs in to the BVE API server.

49



Traverse Perl API

Sreturn value = $obj->Login () ;

This method opens a TCP connection to $tcp_port on $host name or ip, as defined using the
new method. If either the $1ogin idargumentorthe $login pass argumentis missing, the values
specified in the new method (if any) are used.

An optional named argument is provided to override the current timeout setting. On timeout or other
connection errors, the return value is 0 and details on the error are available via the GetErrorMsg
method. On success, a hon-zero return value is provided.

This method can be used repeatedly to switch to a different user in the BVE API server and assume the
new user's permissions and privileges.

Logout

Log out of the BVE API server.
Sreturn value = $obj->Logout;

This method sends a logout command to the BVE API server and closes the already established TCP
connection to $host name or ip, which was defined using the new method.

On timeout or other connection errors, the return value is 0 and details on the error are available via the
GetErrorMsg method. On success, a hon-zero return value is provided.

Examples: Connect, Log In, Create a DGE, Log Out

50

This example creates a connection to Localhost, logs in, creates a new DGE, and logs out.

use zZyrion gw(Provisioning) ;

my $obj = new Zyrion::Provisioning (Host=>"localhost");
my S$Sreturn value = Sobj->
Login (User=>"admin", Password=>"changeme") \|\|

die "ERROR: ", S$obj->[GetErrorMsg], "\n";
Sobj->[CreateDGE] (dgeName=>"Local DGE",
Host=>"192.168.100.200",
locationName=>"Local Network",
softLimit=>100) \|\|

die "ERROR: ", S$obj->[GetErrorMsg], "\n";
Sobj->Logout;

Note that the optional parameter softLimit was specified, but hardLimit was not, in which case
the default value would be used.

In the following example, the same login sequence is used, but now a new device is being created on
the previously created DGE, and then a list of existing devices is generated:



Traverse Perl API

use Zyrion gw (Provisioning) ;

my $obj = new Zyrion::Provisioning (Host=>"localhost");
my Sreturn value = Sobj->

Login (User=>"admin", Password=>"changeme") \|\|

die "ERROR: ", S$obj->[GetErrorMsg], "\n";

my S$param = ()

Sparam{deviceName} = "my test device";

Sparam{address} = "192.168.200.50";
Sparam{locationName} = "Local Network";
Sparam{snmpCid} = "public";

Sparam{comment} = "my workstation";

Sparam{devicetype} = "unix";

Sobj->[CreateDevice] (%param) ||

die "ERROR: ", S$obj->[GetErrorMsg], "\n";
Sobj->[ListDevice] (deviceName=>"'my \*');

if ($obj->[GetResultCount]) {

my Sresult ref = Sobj->[GetResultRef] ();

foreach my $serial num (keys %{ Sresult ref }) ({

print "device with serial number ${serial num} ..\n";
foreach my $Sobject param (keys ${ Sresult ref->{S$serial num} }) {
Sparam value = Sresult ref->{$serial num}->{Sobject param};
print "\t\t${object param} = S{param value}\n";

}

}

}

Sobj->Logout;

Note that in this case, while creating the device, instead of providing named parameters, a hash of
parameters was used.

GetErrorMsg

Retrieve error information from last operation.
Serror = $obj->[GetErrorMsg]

If any previous methods have failed, this method will return relevant information, if available.

Further Examples

Finding Tests Without Actions Assigned

This sample script lists all devices, then checks the action profile assigned to each test and prints out
the ones which do not have any actions assigned.

51



Traverse Perl API

SBVE = new Zyrion::Provisioning (Host=>"myhost") ;
SBVE->Login ( user=>"joe", password=>"mypasswd") ;
SBVE->[ListDevice] (deviceName=>"*") ;

my %DEVICE_LIST = ()

my $RESULT_REF = SBVE->[GetResultRef] () ;

foreach my $device serial (keys $%{ SRESULT REF }) {

my S$Sdevice name =

SRESULT REF->{Sdevice serial}->{devicename};

SDEVICE LIST{$device serial} = $device name;

}

## now scan through tests on each device

foreach my $device serial (sort keys $%DEVICE LIST) {
SBVE->[ListTest] (deviceName=>$SDEVICE LIST{Sdevice serial},
testName=>"'*");

SRESULT COUNT = $BVE->[GetResultCount] () ;

next unless (SRESULT COUNT) ;

$RESULT_REF = SBVE->[GetResultRef] () ;

foreach my Stest serial (keys %{ SRESULT REF }) {

my Saction profile =

SRESULT REF->{Stest serial}->{actionname};

my Stest name = SRESULT REF->{Stest serial}->{testname};
next unless (uc(Saction profile) eq "NONE");

&info ("device = $SDEVICE LIST{Sdevice serial} ; test = \'Stest name\'");
} # foreach test

} # foreach device
SBVE->Logout;

Creating a Custom SNMP Test
This is an example of creating a custom SNMP test by specifying the OID directly via the API.

my $obj = new Zyrion::Provisioning (Host => "localhost");
my %param = ();

Sparam{deviceName} = "my test device";
Sparam{address} = "192.168.200.50";
Sparam{locationName} = "Local Network";
Sparam{snmpCid} = "public";
Sparam{comment} = "my workstation";
Sparam{devicetype} = "unix";
Sobj->[CreateDevice] (%$param) ;

Sparam = ();

Sparam{ 'deviceName'} = "my test device";
Sparam{'testType'} = "snmp";

Sparam{ 'subType'} = "disk";
Sparam{'testName'} = "Disk / Space Util";
Sparam{'interval'} = "300"; # seconds
Sparam{'units'} = "&"; # suitable unit
Sparam{ 'warningThreshold'} = "80";
Sparam{'criticalThreshold'} = "95";
Sparam{ 'snmpOId'} = ".1.3.6.1.2.1.25.2.3.1.6.1";
Sparam{'resultMultiplier'} = "1";

Sparam{ 'maxValue'} = "2048";

# O=rate, l=percent, 2=delta, 3=rate

# 4=deltapct, b5=ratepct

Sparam{ 'resultProcessDirective'} = "1";
Sobj->[CreateTest] (%$param) ;

52



Chapter 5

Plugin Monitors

In This Chapter

OVBIVIBW . ...ttt e ettt e e e e e sttt et e e e e e e e s a s be et e e ee e e e s aassbeeeeeaeeeaaannnbeeeeaaeeesnnnbnreees 54
AdAING A NEW TOSE TY P .ttt ettt e st e e s ab e e s anb e e e s enres 54
Creating A New Plugin Java MONITOT..........cuii it e e 56
Creating A New Plugin SCript MONITOT ........cooiiiiiiiiiiiiiee et 59
Extending the Message HandIer ............eeiiiiiiii e 62

53



Plugin Monitors

Overview

The plugin monitor functionality in Traverse allows creating new monitors in Java or any other
programming language such as C, perl, shell, etc. The system treats such plugin monitors as an
integrated component of Traverse and provides a similar multi-threaded framework as it uses
internally for its own monitors.

Each plugin monitor has an associated XML configuration file describing the test type, default
thresholds and various display parameters. The configuration files are installed in the

$TRAVERSE HOME/plugin/monitors/ directory and the actual plugin monitor file is installed in a
subdirectory under the plugin/monitors directory. The name of the subdirectory must match the monitor
type specified in the configuration file.

Adding A New Test Type

54

Each test configured in Traverse is assigned a type and sub-type. The test type and sub-type
combination serves as the key for global default information that is read from various configuration
files. If Traverse is unable to locate the configuration information for a particular test type and sub-type,
it is ignored and an error message logged. Such configuration information is loaded from

STRAVERSE HOME/etc/TestTypes.xml and other plugin configuration files, which are described
in the sections that follow.

When creating new (plugin) monitors, you will need to create a unique test type and sub-type for that
monitor and provide various default values and other parameters. The entries in

STRAVERSE HOME/etc/TestTypes.xml or other directories should not be edited (unless you are
instructed to edit them by Kaseya Support (https://nelpdesk.kaseya.com/home) as it may adversely affect or
cause failure of Traverse components. Any changes made to these directories may also be lost when
a new version of Traverse is installed. All user customizations are expected to placed in

$STRAVERSE HOME/plugin and its subdirectories.


https://helpdesk.kaseya.com/home

Sample [TestTypes].xml Entry

<testtype>

Plugin Monitors

<displayName>Current Temperature</displayName>
<displayCategory>application</displayCategory>
<subType>temperature</subType>

<units>degrees C</units>
<severityAscendsWithValue>true</severityAscendsWithvValue>
<defaultWarningThreshold>100</defaultWarningThreshold>
<defaultCriticalThreshold>120</defaultCriticalThreshold>
<shadowWarningThreshold>100</shadowWarningThreshold>
<shadowCriticalThreshold>120</shadowCriticalThreshold>
<slaThreshold>120</slaThreshold>
<testInterval>180</testInterval>
<showAsGroup>true</showAsGroup>

<testField>

<fieldName>city</fieldName>
<fieldDisplayName>City</fieldDisplayName>
<isRequired>true</isRequired>
<isPassword>false</isPassword>
<defaultValue>Muskogee</defaultValue>

</testField>
<testField>

<fieldName>state</fieldName>
<fieldDisplayName>State/Province</fieldDisplayName>
<isRequired>true</isRequired>
<isPassword>false</isPassword>
<defaultValue>OK</defaultValue>

</testField>
<testField>

<fieldName>country</fieldName>
<fieldDisplayName>Country</fieldDisplayName>
<isRequired>true</isRequired>
<isPassword>false</isPassword>
<defaultValue>US</defaultValue>

</testField>

</testtype>

The testtype element includes the following child elements:
XML Testtype Child Elements

Child Element
displayName

displayCategory

subType

units

severityAscendsWithValue

Description

A user-friendly name that is used when creating a report or referring to a
specific testtype

This setting defines the column that the test result should be in on the
summary pages in the Web application. Valid values are network, system,
and application.

This is a string that uniquely identifies the testtype to the Traverse software.
You can choose whatever string you want, with some restrictions. The
subtype must be unique to the monitor that the test is running on, and can
only contain alphanumeric characters.

The units for the test measurement. This will be used in reports and event
and summary displays. If the particular test does not have a suitable unit,
use a space as the unit.

This is used to indicate a severity direction for test values, and has the
following possible values: true false or static If the value is true, then the
status being tested becomes more critical as the test value rises. When the

55



Plugin Monitors

value is static, you can set discrete threshold values for warning and
critical.

defaultWarningThreshold This is the default end user warning threshold for this test type. If the
severityAscendsWithValue is “static', then you can specify a comma
separated set of numbers using the following syntax:1,3,5,8-20

defaultCriticalThreshold This is the default end user critical threshold for this test type.

showAsGroup Group tests of the same sub-type together in the Web application during
autoDiscovery of SNMP tests for a device.

shadowWarningThreshold The default admin warning threshold for this test type. Typically this value
will be same as defaultWarningThreshold.

shadowCiritical Threshold The default admin critical threshold for this test type. Typically this value will
be same as defaultCriticalThreshold.

slaThreshold The default SLA threshold for this test type.

testinterval The default interval, in seconds, for running this test.

testField This element defines a specific attribute for the test. A testtype can have 0

or more test fields. Each testfield should have the following child
elements:fieldName - This will be used as key for the field value when it's
passed to the test.fieldDisplayName - A user friendly name for the field that
will be used by the Web application when creating or updating
tests.isRequired - This element indicates whether or not the a value is
required to be given for the field when creating or updating the
test.isPassword - This indicates whether or not the field is a password field.
The Web application will ask for verification of password fields when
creating or updating a test.defaultValue - A default value that will be
presented to a user when creating the test.

Post Processing for Plugin Monitors

Unlike built-in monitors, post-processing directives are not allowed for plugin monitors. The monitors
are supposed to do all the processing and return the final result.

Creating A New Plugin Java Monitor

Traverse allows you to extend its functionality by writing plugin monitors in Java. Such monitors can
collect information from various applications and/or devices. This involves creating the monitor,
packaging it and creating a corresponding configuration file.

Configuration File Format

Traverse uses an XML file format called a "test descriptor" to describe settings for plugin tests. Here is
an example test descriptor that might be used to describe a plugin that monitors weather information.

Weather Information Plugin Test Descriptor

56



Plugin Monitors

<monitor type="weather" plugintype="java"
resource="com.weatherwatchers.netvigilplugin.WeatherPlugin">
<testtype>
<displayName>Current Temperature</displayName>
<displayCategory>application</displayCategory>
<subType>temperature</subType>
<units>degrees C</units>
<severityAscendsWithValue>true</severityAscendsWithValue>
<defaultWarningThreshold>100</defaultWarningThreshold>
<defaultCriticalThreshold>120</defaultCriticalThreshold>
<shadowWarningThreshold>100</shadowWarningThreshold>
<shadowCriticalThreshold>120</shadowCriticalThreshold>
<slaThreshold>120</slaThreshold>
<testInterval>180</testInterval>
<testField>
<fieldName>city</fieldName>
<fieldDisplayName>City</fieldDisplayName>
<isRequired>true</isRequired>
<isPassword>false</isPassword>
<defaultValue>Muskogee</defaultValue>
</testField>
<testField>
<fieldName>state</fieldName>
<fieldDisplayName>State/Province</fieldDisplayName>
<isRequired>true</isRequired>
<isPassword>false</isPassword>
<defaultValue>0OK</defaultValue>
</testField>
<testField>
<fieldName>country</fieldName>
<fieldDisplayName>Country</fieldDisplayName>
<isRequired>true</isRequired>
<isPassword>false</isPassword>
<defaultValue>US</defaultValue>
</testField>
</testtype>
</monitor>

The first element is the monitor element. The monitor element defines what monitor the different tests
belong to. There are three attributes for the monitor element:

Monitor Element Attributes

Attributes Description

type This defines a type name for the plugin, and the type of monitoring it does. The value of type will
show up in the DGE status line when displaying the testing queues and monitor status, and will
be used in the Web application

plugintype This attribute describes the type of plugin. For a Java plugin monitor, this parameter should be
set to java.

resource This is the name of the resource of that should be used to do the tests. For a plugintype of java,
this should be the fully qualified name of a Java class file that implements the [NetvigilPlugin]
interface.

The configuration file also requires a testType definition as described above. You should make a
different XML test descriptor for each type of monitor you want to create. To group multiple tests that
belong to the same general test type, each monitor type can have multiple testType definitions with
subType defined for each test. These can be contained within a single monitor descriptor or spread
across separate XML files.

57



Plugin Monitors

Writing The Plugin Class

Your plugin class should be able to be run under Sun JRE 1.5. Your plugin class must implement the
[NetvigilSimplePlugin] interface, orthe [NetvigilBatchPlugin] interface. See the javadoc
for more information. The [NetvigilSimpleInterface] should be used when only small amounts
of plugin tests will be provisioned, or for tests with long testing intervals. The
[NetvigilBatchPlugin] should be used when large sets of tests can be run at one time, and
where the tests require some expensive operation before they run, such as opening a connection.

Plugin tests can then be created in the web application or Traverse socket interface. Once created, the
plugin tests are stored in the provisioning database, with each of the testField values for that test,
with the £ieldName as a key. The DGE loads the tests from the database, and after it has determined
that the testing interval has passed, adds the test to a test queue, indicating that the test should be run.

If the plugin implements the [NetvigilSimplePlugin] interface, the DGE creates a new instance
of your [NetvigilSimplePlugin] subclass and calls the doTest method for each plugin test in its
test queue, passing a java.util.Properties object with the testField values. The value
returned by doTest is stored in the DGE database, and used for reports and status. If the value
returned is RESULT UNKNOWN or RESULT FAILED, the DGE calls getErrorMessage and puts any
returned error message in the Traverse error log, so the web application user can determine the
reason for a failed test.

If the plugin implements the [NetvigilBatchPlugin] interface, the DGE creates one instance of
the plugin when it starts up, and calls addTest on that instance for each plugin test in its test queue,
again passing a java.util.Properties object with the testField values. The DGE calls
addTest until the test queue has no more tests of the plugin type, or until the number of tests specified
by getMaxBatchSize has been reached. After this, the DGE calls the runBatch method of the
plugin object. When runBatch returns, the DGE calls getTestResults to get the results of the
batch test. The order of results returned in the array by getTestResults must match the order that
the DGE called addTest. The DGE takes the results and stores them in the DGE database, where
they are used in reports and status displays. If any of the results has a value of RESULT UNKNOWN or
RESULT FAILED, the DGE calls getErrorMessage with the index of the result in the array returned
by getTestResults. If the error message returned is not empty, itis logged in the Traverse error log.

Configuring the Plugin Package

Once you're done creating your class, create a . jar file for it and any other required classes. Create
an XML test descriptor as described above for your class. Place the test descriptor in

$TRAVERSE HOME/plugin/monitors. Make a directory in a

$TRAVERSE HOME/plugin/monitors called <type>/1lib, where <type> is the type of monitor in
your XML test descriptor. So, for the weather example described in Weather Information Plugin Test
Descriptor (page 56), you should create a directory called

$TRAVERSE HOME/plugin/monitors/weather/lib. Place the *.jar file you just created in the
1ib directory. If Traverse is installed in a distributed environment (multiple hosts), the plugin package
and test descriptor file should be installed on each host running Traverse.

Provisioning Plugin Tests

58

The web application and DGE components must be restarted before the new monitor is usable. When
Traverse starts, will scans the monitor plugin directory for XML and . jar files. It adds the tests
described by the XML file to its list of test descriptions, and adds the . jar files found in <type>/1ib
to the Java CLASSPATH. If an XML file has an error in it, a message is written to the error log, and the
XML file is ignored. Each different XML file results in a separate test queue in the Traverse DGE.



Plugin Monitors

Creating a Plugin Test

1. Navigate to Administration > Devices.

2. Click Tests on the line for the device you want to add tests for.
3. Click Create New Standard Tests.
4

. Select the radio button for Create new tests by selecting specific monitors. You should now see the
tests you defined in the plugin XML file.

5. Check the check box for each plugin monitor test you want to provision.
6. Click Add Tests.

You can also create and update tests through the Traverse socket server. Just type help
Test.create Oor help Test.update onthe Traverse socket server command line to see the
specifics for creating or updating a plugin test.

Creating A New Plugin Script Monitor

The following section describes how to create a new plugin script monitor.

Configuration File Format

Traverse uses an XML file to describe settings for script plugin monitors. Here is an example test
descriptor that might be used to describe a plugin script that monitors weather information:
<monitor type="weather" plugintype="script">

Lll==

Insert a testType element here.

-—>

<script type="weather" subType="temperature">
<rootScript>gettemp.pl</rootScript>

<timeout>10</timeout>

<parameters>--country=${country} --state=${state}
-—city=${city} </parameters>

</script>

</monitor>

The first element is the monitor element. The monitor element defines what monitor the different tests
belong to. There are two attributes for the monitor element:

Monitor Element Attributes

Attributes Description

type This defines a type name for the plugin, and the type of monitoring it does. The value of type
shows up in the DGE status line when displaying the testing queues and monitor status, and is
used in the web application

plugintype This attribute describes the type of plugin. For a script plugin monitor, this parameter should be
set to script.

The monitor element also requires a testType definition as described above.

The second element is the script element. This element describes the way the script should be run.
The script element has two attributes, type and subType, that associates the script with a test type.
The type attribute for the script should have the same value as the type attribute of the monitor
element. In this case, they're both weather. The value of the subType attribute should match the
subType attribute of one of the testType elements owned by the monitor. Our script will get the
temperature, so we want it to be associated with the temperature test type, so we give its subType the
same value, temperature, as the subType for the temperature test type.

59



Plugin Monitors

The next two child elements are fairly straightforward. The rootScript element gives the name of
the script to run, and the timeout element gives the maximum number of seconds to wait for the
script. You should give a t imeout of less than 60 seconds for your script, so that the Traverse monitor
running your script can return in a timely manner if your script hangs for some reason. Timeout values
of zero or less will be interpreted as a 60-second timeout.

The final child element is the parameters element, which defines how arguments are passed to the

script. You can enter any text for the parameters object, and you can also use testField
placeholders to indicate where testField values should be passed. To use a placeholder, simply
enter \ s {, followed by the fieldName of a testField for the testtype your script plugin is
handling, and end the placeholder with a }.

The following table shows the variables that can be used in the parameters element of the

configuration file.

Variables Available for the parameters Element

${container_name}
${container_member_count_match}
${department_name}
${device_comment}
${device_location}
${device_name}
${device_snmp_cid}
${device_tagl}

${device_tag3}

${device_tag5}
${device_tag2_caption}
${device_tag4_caption}
${device_type}

${test_name}
${test_shadow_critical_threshold}
${test_sla_threshold}

${test_type}
${test_user_critical_threshold}

${container_member_count_all}
${affected_containers}
${product_name}
${device_address}
${device_model}
${device_serial_number}
${device_snmp_version}
${device_tag2}

${device_tag4}
${device_tagl_caption}
${device_tag3_caption}
${device_tag5_caption}
${device_vendor}
${test_serial_number}
${test_shadow_warning_threshold}
$ftest_sub_type}

${test_units}
${test_user_warning_threshold}

When Traverse calls your script, it will replace the placeholders with the values given when a test was
provisioned.

Based on the example above, if you provisioned a test for London, England, Traverse would call the
script with the following arguments:

—--country=England --state= --city=London

If you don't provide a parameters element, the script is called without any arguments.

Note: \$ {device tagl} provides the value configured for tagl for the device.
\${device tagl caption} provides the description (caption) of tagl as configured in the

emerald.xml file.

Writing The Plugin Script

You can write your script in any language you want. When called with the set of arguments you defined
in the parameters element of your plugin XML file, your script should run a test based on the



Plugin Monitors

arguments. If the test was completed successfully, your script should print a zero or a positive integer
on standard output that corresponds to the value determined by testing. If your test failed for some
reason, you can print one of the following error codes:

= -1, to indicate that the test failed for an unknown reason (UNKNOWN), or
= -2 toindicate that the test failed for a known reason (FAIL).

Note: The plugin monitor takes the last numerical value on a line by itself as the test result.

You can also pass out debugging or error information from your script. Any lines beginning with the
string DEBUG: is logged to the monitor.log file under $TRAVERSE HOME/logs/ directory. Any
lines beginning with the string ERROR: are logged to the error. log file in the 1ogs directory with
WARN severity.

Once you're done writing your script, you should test it out separately on the command line to be sure
it works. Next, place your script in $TRAVERSE HOME/plugin/monitors/<test type> directory
(where <test type> is the type name specified in the configuration file. Place the XML test
descriptor in STRAVERSE HOME/plugin/monitors. If Traverse is installed in a distributed
environment (multiple hosts), the monitor script and configuration file should be installed on each host
running Traverse. The web application and DGE components must be restarted before the new
monitor is usable.

Sample Plugin Monitor with Discrete Thresholds

This is an example of a sample atmosphere pressure monitor which uses discrete thresholds.

1. Create a test type definition file: plugin/monitors/my atmosphere.xml with the following
contents.

<monitor type="atmosphere" plugintype="script">
<testtype>
<displayName>Atmospheric Pressure</displayName>
<displayCategory>application</displayCategory>
<subType>pressure</subType>
<units>psi</units>
<severity ascends with value>discrete</severity ascends with value>
<defaultWarningThreshold>2,5</defaultWarningThreshold>
<defaultCriticalThreshold>4,8-10,99</defaultCriticalThreshold>
<shadowWarningThreshold>2, 5</shadowWarningThreshold>
<shadowCriticalThreshold>4,8-10, 99</shadowCriticalThreshold>
<slaThreshold>8-10</slaThreshold>
<testInterval>60</testInterval>
</testtype>
<script type="atmosphere" subType="pressure">
<rootScript>run.sh</rootScript>
<parameters></parameters>
<waitForTerminate>true</waitForTerminate>
<timeout>15</timeout>
</script>
</monitor>

Note how the thresholds have been specified as discrete values. If the polled result is 2 or 5, the
test is in a warning state. Critical is 4,8,9,10 and 99. Everything else is OK.

2. Now create the monitor in the plugins/monitors/ directory under a directory with the same
name as the test type, and name it as indicated in the test type definition above
(plugins/monitors/atmosphere/run.sh)

61



Plugin Monitors

#!/bin/sh
#if [ -f "/tmp/atmosphere.dat" ]; then
cat /tmp/atmosphere.dat
else
echo 0
fi
3. Now restart the web application, and then provision the test:
a. Login as end user.
b. Click on Administration > Devices > Tests.
c. Click on Add New Standard Tests.
d. Check Atmosphere.
e. Enable the test, and make sure that discrete is selected as a severity option.
f.  Submit the form.
4. To test this, enter valuesinto /tmp/atmosphere.dat and you can see the test status change in

each polling cycle:
echo 99 >/tmp/atmosphere.dat
echo 5 > /tmp/atmosphere.dat
echo 6 > /tmp/atmosphere.dat

Extending the Message Handler

62

Users can extend the Message Handler to handle additional message sources and write custom rulesets
by creating additional configuration files and storing them in the plugins directory under

$TRAVERSE HOME/plugin/messages/. Additional data sources should be defined in configuration
files named as nn_src_yyy.xml while additional rulesets should be named nn_rule yyy.xml
where nn is a number and yyy is any freeform text).

As an example, you can add new log files to be monitored and a trap handler listening on port 2162 by
creating the following two files in the STRAVERSE HOME/plugin/messages/ directory:

00_src_logs.xml

<source type="file" name="mylog">
<enabled>false</enabled>
<input>/var/log/mylogs</input>

</source>

<source type="file" name="apacheErrLog">
<enabled>true</enabled>
<input>/apache/logs/httpd.error</input>

</source>

00_src_traps.xml

<source type="trap" name="traps2">
<enabled>true</enabled>
<port>2162</port>
<performHostnameLookup>false</performHostnameLookup>

</source>

The format for the rule files is described in the Traverse User Guide. Remember to restart the Message
Handler component after editing or creating new files.



Chapter 6

External Authentication

In This Chapter

OVBIVIBW . ...ttt e ettt e e e e e sttt et e e e e e e e s a s be et e e ee e e e s aassbeeeeeaeeeaaannnbeeeeaaeeesnnnbnreees 64
Authentication PIUgin JAVA ClaSS ..........eeiiiiiiiiiiiiie et 64
ArchiteCtural DESCIIPLION ......coiiiiiiiiiiieiie ettt e e e e et e e e e e s e anbebeeeaaeeaeaanes 65
Authentication PIUGIN SCHPL .....ooo it e e e e 65
WeDb URL AULNENTICATION .....eviiiiiieii ettt 67

63



External Authentication

Overview

You can override the standard Traverse authentication methods by creating your own plugin Java
classes or scripts. This allows the use of custom authentication databases or other site-specific
authentication methods to control access to Traverse. Note that although it is possible to use an
external authentication source, the authorization information (permissions, limits, etc.) are still stored in
the Traverse provisioning database. So it will be necessary to create the login ID on the Traverse
database even though that login is authenticated from an external database.

Additionally, Traverse provides the facility for integrating with a web portal and using the web portal's
authentication mechanism.

Note: If you change the authentication mechanism, the changes are applied only to users created after
the change was made.

To use the new authentication method for users created before the authentication mechanism
changed, you must change their passwords using either the web application or the BVE TCP server
(see userClass.update. Otherwise, older users will continue to be authenticated by the old
mechanism (e.g., the Traverse internal password database).

Note: Changes to emerald.xml need fo be reinstated on an upgrade since all changes might not be copied
over during an upgrade.

Authentication Plugin Java Class

64

If you want to create a java class for authentication, your plugin class must implement the
NetvigilPluginAuthentication interface. See the javadoc for
NetvigilPluginAuthentication for more information.

Your implementation of the Java class
NetvigilPluginAuthentication.getAuthenticationString should take the user login
name and password, and create an authentication string, such as an encrypted password, from this
information. The Properties argument to getAuthenticationString is reserved for future use.
When a user logs in, your implementation of NetVigilPluginAuthentication.authenticate
is given the user login name, the authentication string for that user that was created by
getAuthenticationString, and the password the user gave when he or she tried to log in. As with
getAuthenticationString, the Properties parameter to authenticate is reserved for future use.
Your version of authenticate should use this information to determine whether or not the user should be
allowed to log in. If the user should be allowed to login, your version of authenticate should return true.

As an example, for a Java class which does authentication using rot13 to encrypt a given password,
you should choose a unique string to identify the authentication method for your class. This string will
be stored in the database to indicate the type of authentication method to use with a given
authentication string. The strings clear, des, and script are reserved, but you can use any other
unigue string to identify your plugin authentication method.

Finally, you must use the unique string along with the name of your plugin class in the authentication
section of $TRAVERSE HOME/etc/emerald.xml to identify your plugin class as the class to use for
authentication. For example, if you wanted to use the rot13 class mentioned above for authentication,
you could choose the string rot13 as the identifier, and modify the authentication section in
emerald.xml so that it looks like this:



External Authentication

<authentication
method="rot1l3"
class="[Rotl3Authentication]"
execute=""
parameters=""
/>
Leave the execute and parameters attributes in the authentication section empty. They're reserved for
plugin authentication using scripts described in Authentication Plugin Script (page 65).

Once you're done writing your class, create a * . jar file for it and any other required classes and place
them in STRAVERSE DIR/plugin/auth directory. Your plugin class, and any third party *.jars
you've included, must work under Sun JRE 1.5.

Architectural Description

If you've specified a plugin java class to use for authentication, when a user password is created or
changed, your implementation of

the [NetvigilPluginAuthentication] .getAuthenticationString method is called. The
authentication string this method returns is stored in the provisioning database, along with the unique
string you picked to identify the authentication method. Traverse uses the unique string as a key to find
and load your plugin authentication class. When the user tries to login to a Traverse application, this
authentication string is retrieved from the database, and it, along with the password the user gave and
the user login name is passed to

your [NetVigilPluginAuthentication] .authenticate method. If your authenticate method
returns true, the user is allowed to login. Conversely, if authenticate returns false, the user is not able to
login.

If you've told Traverse to use a plugin script, when the user logs in, Traverse takes the user login
name, password and the parameters attribute from emerald.xml, and replaces the placeholders in
the parameters attribute with the login name and password. It then looks in the authentication scripts
directory for the script named in the execute attribute inemerald.xml, and executes the script with
the updated parameters attribute. If the script runs successfully, and returns a zero exit code, Traverse
allows the user to log in. If Traverse can't run the script, or the script returns with a non-zero exit code,
the user is not allowed to login.

Authentication Plugin Script

You can also specify a script, program or batch file to use for authentication. When Traverse runs the
program the user's login name and password are passed as arguments. Following the convention of
using a zero return code for successful program execution, your script must return a zero value to
indicate that authentication was successful. You can specify the format of the arguments passed to
your program.

Here's an example Perl script (auth.pl) that only lets a user named jane log in, and only if she gives
the password secret.

65



External Authentication

Sample Login Authentication Script

66

#!/usr/bin/perl

if (S#ARGV \!= 1) {

print STDERR "not enough arguments\!\n";

# exit with a non-zero

exit 2;

}

# get the username and password from the arguments

#

# we've set up our parameter string so that username
# is the first argument, and password is the second

#

Susername = SARGV[O0];

Spassword = SARGV[1];

if (Susername eqg "jane" && Spassword eq "secret") {
# return 0 so that jane can log in to Traverse
exit 0;

} else {

# return a non-zero failure code, since the username
# and/or password was wrong.
exit 1;

}

Once you're done with your script, place it in the Traverse plugin authentication directory
(STRAVERSE HOME/plugin/auth). To instruct Traverse to use your script for authentication, you'll
need to modify STRAVERSE HOME/etc/emerald.xml. Update the authentication element, which
initially may look like this:
<authentication

method="des"

class=""

execute=""

parameters=""

/>

Change this so that the method attribute is script. This tells Traverse that you want to do authentication
with a script. Leave the class attribute empty, since that's only used for plugin authentication using a
Java class described in Authentication Plugin Java Class (page 64). Place the name of your script in
the execute attribute. Use the parameters attribute to specify the order that the username and
password should be passed to your script, along with any other flags you want passed. You can use
the special variables $ {username} and $ {password} as placeholders for the username and
password respectively. For example, you may want your script to take GNU-style long parameters, so
you could set the parameters attribute to something like this:

--username=S$ {username} --password=${password}

Since our example script doesn't use any flags for the username and password, we'll use
${username} and ${password} for the parameters. The authentication section of emerald.xml
would look like this after we're done:

<authentication

method="script"

class="class=""

execute="auth.pl"

parameters="S${username} ${password}"
/>
Note that any existing Traverse users still continue to be authenticated using the older authentication
method, since the authentication method is stored with each user entry in the database. To switch
them to the new scheme, simply change their password once. This allows you to keep the password for
superuser tied to the local authentication scheme and not dependent on an external resource or



External Authentication

database.

Warning: Any parameters passed to the plugin script you specify on the command line may be viewed by
anyone oh your system with the ps command during the time it takes the script to execute.

Samples for Windows AD, Radius

Sample scripts for authentication using Windows Active Directory, Radius, etc. have been contributed
by Traverse users and are available on the Kaseya Community web site by searching for the keywords
authenticate against active directory.

Web URL Authentication

You can bypass the initial login page in Traverse by directly encoding the username and password
information in the URL and encrypting this information using a shared key. This mechanism allows a
user to access Traverse via some other portal where he/she has already been authenticated.

1. Edit STRAVERSE HOME/webapp/WEB-INF/web.xml and change the shared key in
<param-name>externalloginKey</param-name>

2. Copy $STRAVERSE HOME/utils/externalWebLogin.cgi to your Web portal.

3. Edit this script and set the shared key, as well as the mechanism to get the department,
username, password (can be changed to extract from the HTTP environment depending on your
setup).

4. SetmaxPages to 1 to limit the user to only view the one page that the URL connects to, else
leave as -1 for full access.

This allows displaying just one page—for example, to make one report publicly available—without
allowing a full login.

67






Chapter 7

Plugin Actions

In This Chapter

OVBIVIBW . ...ttt ettt e oo sttt ook et e o4 ket et e s bbbt e e sabb et e e sabb et e e aanbne e e e nnneees 70
Creating NeW PIUGIN ACHONS ......cciiiiiieiiiiiee ittt e s e e sneee e 70
EXAMPIES ...ttt e e e e e e e e e eeaaaa s 73
Extending the ACtION FrameEWOrK .............ooiiiiiiiiiiiiie e 74

69



Plugin Actions

Overview

Traverse provides a strong plugin framework which enables you to extend the native capabilities.
While Traverse provides various common notification mechanisms, such as email, pager, trouble
ticket interface and SNMP traps, the plugin action framework allows custom notification and action
development as needed. These custom plugin actions seamlessly integrate with the Traverse Action
Policy module which allows notification policies controlled by time of day, number of polls before
activation, etc.

Creating New Plugin Actions

70

Creating plugin actions requires two components:

= XML configuration/definition

= The script itself
Before a plugin action is available to users, you need to create a configuration file defining the location
of the script to call, and what parameters need to be passed to this script. The configuration file needs
to be created under $TRAVERSE HOME/plugin/actions directory. There are no restrictions on
what the configuration file can be named. However, the file must have a * . xm1 extension, as only
* . xml files are scanned for configuration information.
writeToFile.xml

Here is a sample configuration file.



Plugin Actions

<?xml version="1.0" standalone="yes"?>
LY==
All plugin "script" action configuration should be enclosed in an
<ActionScriptConfig>.. </ActionScriptConfig> block
-—>
<ActionScriptConfig>
Ll==
This is the name of the script action that will appear in the drop-down
list within the action profile management page on the Web application. This
name should be unique. It should not match the name of any other existing
native or custom action.
-—>
<name>My Custom Script</name>
Ll==
This is the script/batch file/application to be executed. Use only the
name of the script/application, and do not include the path. Traverse looks
for this script under the STRAVERSE HOME/plugin/actions directory.
-—>
<rootScript>writeToFile.sh</rootScript>
Ll==
The parameters to pass to the script when executing it. See below for
a
list of variables that you can use as parameters. Parameters can be specified
in multiple lines. At execution time, they are concatenated into a single
line.
-—>
<parameters>
-d S${device name}
-t ${test name}
-s S${current user severity}
</parameters>
Ll==
When executed, should Traverse wait for the script it to terminate?
Possible values:true or false.
==
<waitForTerminate>true</waitForTerminate>
Ll==
If waitForTerminate is true, how long (in seconds) should Traverse wait
before aborting the script? If set to 0 or a negative value, the application
will wait indefinitely for the script to terminate.
-—>
<timeout>10</timeout>
Ll==
If true, the output from the script will be added to the device comment
on the Web application. Enabling this option automatically sets
waitForTerminate to true.
-—>
<addOutputToComment>false</addOutputToComment>
</ActionScriptConfig>

The following variables can be used in the parameters section of the configuration file:

71



Plugin Actions

72

${department name}
${recipient}

${device serial number}
${device model}

${device type}
${device snmp version}
${current user severity}
${current sla severity}
${action item}

S${action class}

S${action profile}

S${action class}

${device tagl}
${device tagl caption}
S{timestamp}

${device name}

${device address}

${device vendor}
S${device snmp cid}
S{device location}
${current shadow severity}
S{time in state}
${container member type}
${container member count match}
${container name}
${affected containers}
${container member summary}

* Scontainer member count match gives the number of immediate children in the container
having the same severity as the container.

* Saffected containers gives the parent containers impacted by the severity of the current
containers (one per line).

* Scontainer member summary includes details on the severity of the container's children.
*» S${device tagl} provides the value configured for tagl for the device.

* S${device tagl caption} provides the description (caption) of tagl as configured in the
emerald.xml file.

The following additional variables are available for events triggered by polled test results only.

- S${test name}

- S${test user warning threshold}
- S${test sla threshold}

- S{test sub type}

S{result value}

${test serial number}

S{test user critical threshold}
S{test type}

S{test units}

${event reason}

The following variables are specific to events triggered by the Message Handler (for syslogs, log files,
traps, etc.):

- S${message}

- S${message source}

- S${ruleset description}

- S${original message}

- S{message_ type}

As a security precaution, the actual script must be inthe plugin/actions directory. If the command

X5 oF F > X X X X o 3k >k X X X X X X 3 3k >k X X X X X

* ok ok ok % |



Plugin Actions

line tool is in a different directory, you can either create a wrapper script/batch file that calls the real
program, or create a symbolic link (UNIX only) to the real program into plugin/actions.
writeToFile.sh

Here is a sample script that corresponds to the sample configuration file provided above.
#!/bin/sh

time="date '+%Y%m%d-%H:%M'"

echo "time:$time, device: $2, test: $4, severity: $6" \

>> /tmp/severity.log

The configuration file, and the script, need to be installed under plugin/actions directory on all
hosts that are running Traverse application. Before the new action is available, the web application
and DGE components must be restarted. Once the configuration file has been loaded, it show ups on
the drop-down list in the action profile management page within the web application. To use the newly
added plugin action, you first need to create an action profile that uses this script.

Creating an Action Profile

1. Create an action profile via Administration > Actions > Create An Action Profile (or update an
existing profile).

2. From the Notify Using drop-down list, you should be able to select the script. The name displayed
on the list will correspond the <name>. . .</name> parameter in the configuration file (My
Custom Script).

3. The Message Recipient field can be left empty and the rest of the parameters set as you see fit.

4. Apply this action profile to various tests as required.

For example, if an action profile containing this sample action is assigned to a test called My Test for
a device called My Device, when the action profile is triggered for warning severity, the DGE
component executes this script as:

STRAVERSE HOME/plugin/actions/writeToFile.sh -d "My Device" -t "My Test" -s
"warning"
and waits 10 seconds for the process to complete. Upon successful execution /tmp/severity.log
should have an entry that looks like this:
time:2002nnnn-hh:mm, device: My Device, test: My Test, severity: warning

You can use the same script for multiple actions, for example, using different parameters. To do this,
create multiple plugin action configurations that correspond to the same script.

Examples

Reboot Router

For example, if the CPU utilization on a router stays consistently at 80%, the following plugin can be
used to reboot a router. The files must be placed in the $STRAVERSE HOME/plugins/actions
directory.

73



Plugin Actions

plugin/actions/rebootRouter.xml

<?xml version="1.0" standalone="yes"?>
<ActionScriptConfig>

<name>Reboot Router (via telnet)</name>
<rootScript>rebootRouter.pl</rootScript>
<parameters>${device address}</parameters>
<addOutputToComment>false</addOutputToComment>
<waitForTerminate>true</waitForTerminate>
<timeout>60</timeout> <!-- seconds -->
</ActionScriptConfig>

plugin/actions/rebootRouter.pl

#!/usr/bin/perl -w

# DESCRIPTION:

# log in to a cisco router, switch to enable mode
# and reboot it

use Net::Telnet;

my S$Sdevice address = SARGV[0]; # Passed from Traverse
my $login user = "username"; # SET THIS
my $login pass = "password"; # SET THIS
my S$enable pass = "enable"; # SET THIS

my Ssocket = new Net::Telnet (%PARAM) ;
Ssocket->open (Host => Sdevice address, Port => 23);
$socket->login($login user, $login pass);

Ssocket->print ("enable") ;

Ssocket->print ($enable pass);

Ssocket->print ("reload in 2 automated Traverse action");
Ssocket->print ("exit") ;

Ssocket->close;

Note: This script sample does not include error management. It only highlights the basic commands for
logging in to and rebooting a Cisco router.

Extending the Action Framework

The action framework can be extended easily using the Plug-in Framework to run any external
program. The device name and test information can be passed to the external program to build very
flexible actions, which can then use the API to query the state of another device and test before
executing a corrective action.

RT Trouble Ticketing Plugin

74

This integration package adds a new custom action to the drop-down list of actions available to a user
of the Traverse web application. The action can be confided to trigger after certain number of test
cycles, repeat after several test cycles, and trigger during certain hours of the day, like any Traverse
action. Once triggered, the script connects to an existing RT (version 2.x) system and searches for a
ticket in the specified queue matching a certain subject created using a device and test name. If found,
the ticket is updated with new information. Otherwise a new ticket is created and the URL to the ticket
is added to the device comment.

Note: This plugin needs to be licensed separately. Contact Kaseya Support (https://helpdesk.kaseya.com/home)
for more information.



https://helpdesk.kaseya.com/home

Plugin Actions

Prerequisites
Before installing this package, the following tasks need to be completed.

If you have multiple locations defined in your Traverse environment, decide which locations
should have the ability to open tickets in RT. As each location may have multiple DGEs, this will
assist you in compiling a list of DGEs where the package needs to be installed.

This package uses RT Perl APl and requires the RT Perl modules to be functional. In order for this
tool to function properly, RT must be installed and configured properly on each DGE. lif the web
application is running on a separate host, there is no need to install RT on that host. Install RT
under it's default location /opt/rt2, orinstall it at a location of your choice, and create a
symbolic link from /opt/rt2 to that directory. Instructions for installing RT are available from
www.bestpractical.com/rt.

Copy etc/config.pmfrom your RT hostto /opt/rt2/etc/config.pm on all the DGEs. Edit
/opt/rt2/etc/config.pmand update s [DatabaseHost] to point to your RT host. You also
may want to update $ [LogDir], or create the directory specified and make sure that the
directory permissions are set up properly.

Create a new login for Traverse into RT database (via [WebRT]). Set an appropriate username
(for example, traverse@your.domain) but make sure to leave the email field blank. This
ensures that when a new ticket is created, no auto-replies are sent, if there is such a script
configured for the queue you will be using.

Ensure the newly created user has permissions to create new tickets and add comments to
existing tickets.

You may have to configure your RT database for remote access.

» By default, when using [MySoQL] for RT database, the database user (specified in
/opt/rt2/etc/config.pm, variable s [DatabaseUser] is only allowed access from
localhost. Before this custom action can create/update tickets, it must be allowed access.

» For [MySQL]J, this involves connecting to the rt2 database or the database name specified
in /opt/rt2/etc/config.pm) locally on the RT host as root, and using:
GRANT SELECT, INSERT, CREATE, INDEX, UPDATE, DELETE ON rt2.* TO
rt user@n.n.n.n;
where n.n.n.n is the IP address of each DGE.

» When using Postgres database, you will have to make necessary additions to
data/pg hba.conf file. Please refer to configuration documents for the respective
database vendors ([MySQL] or [PostgreSQL]) for additional details.

Ensure the RT Perl modules are working properly. The test-rt.pl test script should be able to
search and display all new/open tickets in your RT system (replace YOUR QUEUE_NAME in the
script with a valid queue name).

Create and run the script from each DGE to verify proper installation and communication with RT.

Installation

To install the RT Trouble Ticketing Plugin:
1. Copy the installation package to each DGE that should have the custom action, and also to the

host running the web application. Store it in a temporary location.

2. Extract the files and start installation:

» Windows: Double-click the installation executable.
> UNIX:

75



Plugin Actions

cd /tmp

gunzip -c integ-rt2-n.n.tar.gz | tar xvf -
cd integ-rt2-n.n

perl ./install.pl

3. Provide answers to the requested gquestions. The installation process copies the integration
package into the appropriate location under Traverse installation directory.

4. You must restart the DGE process and web application at a convenient time before the action
becomes visible in the drop down list in the web application, or can be executed by a DGE.

Configuration on Windows

To use the newly added plugin action, you must first create an action profile that uses this script.
Create an action profile via Administration > Actions > Create New Action or update an existing profile.
From the Notify Using drop-down list, you should be able to select the script. The name displayed on the
list will correspond to the <name>. . .</name> parameter in

STRAVERSE HOME/plugin/actions/createTicketInRT.xml file. The Message Recipient
field can be left empty and rest of the parameters set as you see fit. Now apply this action profile to
various tests as required.

If you wish to create tickets in different queues, you will need to create two different plugin actions, one
each for the two RT queues:

Start > Programs > Traverse > Stop Traverse. In STRAVERSE HOME/plugin/actions/, rename
createTicketInRT.xml to RT-queuel.xml.c. Edit RT-queuel.xml and change the <name>. .
</name> option to something descriptive, like <name>Create/Update RT-queuel</name>. AlSO
update the --queue option to queuel. Save the file and make similar changes for RT-queue?2 . xml.
Make sure to use different <name>. . </name> options.

By default, a new ticket is created on a per-test basis. If device A has two tests X and Y, and both tests
fail, one ticket for X and one ticket for Y will be created. If you prefer to restrict new tickets to a
per-device basis, where information for X and Y is entered into the same ticket and the second test
information is added as additional comment, then edit the XML configuration file for the script and add
the —--perdevice option to the <parameters>. .</parameters> section.

Configuration on UNIX

76

To use the newly added plugin action, you first need to create an action profile that uses this script.
Create an action profile via Administration > Actions > Create New Action (or update an
existing profile). From the Notify Using drop-down list, you should be able to select the script. The name
displayed on the list will correspond to the <name>. . .</name> parameter in

$STRAVERSE HOME/plugin/actions/createTicketInRT.xml file. The Message Recipient
field can be left empty and rest of the parameters set as you see fit. Now apply this action profile to
various tests as required.

If you wish to create tickets in different queues, you will need to create two different plugin actions, one
each for the two RT queues:

sSu

cd $TRAVERSE HOME

etc/traverse.init stop

cd plugin/actions

mv createTicketInRT.xml RT-queuel.xml

cp RT-queuel.xml RT-queue2.xml

Now edit RT-queuel .xml and change the <name>. . </name> option to something descriptive, like
<name>Create/Update RT-queuel</name>. Also update the -—queue option to queuel. Save
the file and make similar changes for RT-queue?2 . xml. Make sure to use different

<name>. .</name> options.

By default, a new ticket is created on a per-test basis. If device A has two tests X and Y, and both tests



Plugin Actions

fail, one ticket for X and one ticket for Y will be created. If you prefer to restrict new tickets to a
per-device basis, where information for X and Y is entered into same ticket and the second test
information is added as additional comment, then edit the XML configuration file for the script and add
the —--perdevice option to the <parameters>. .</parameters> section.

Troubleshooting

Look in the traverse/logs/error.log for any error messages logged by the DGE process.
(UNIX) Check to make sure plugin/actions/createTicketInRT.pl is executable (mode 0555).

(UNIX) Try running the script manually to ensure you can create a new ticket.

cd /usr/local/traverse/plugin/actions
./createTicketInRT.pl --queue YOUR QUEUE NAME \
--rtuser traverse@your.domain \

--device "Sample Device" --test "Sample Test" \
--severity warning --result 100 —--unit ms \
--location "Data Center" --type ping/rtt \
-—threshold "75/200" --search

77






Chapter 8

Web Services API

In This Chapter

(@Y= V1= PO 80
Traverse Web Services AP WOTKFIOW ......ooooiiiiiiiiiii e 80
THIME EXPIrESSIONS ..ottt ie et ettt ettt e e e e e s a et et e e e e e s nbabeeeeaeesesnnbbbeeeaaeeaaannns 81
(O] o] 1=To1 B 11 (= TP PR 82
TraverSE WSDL FIIES ...t e e e e et e e e eeaeees 82
ST T 0] o] [ @1 o [ SRR 83

79



Web Services API

Overview

his chapter provides an overview of the Traverse Web Services Application Programming Interface
(API). You can use the Traverse Web Services API to create your own portal to provide a customized
view of the system. For example, you could create a portal showing a limited number of devices or an
aggregate status showing the health of the network.

The Traverse Web Services API consists of the following web services:

Service Description

Session Manager Processes login and logout requests The Federated Security Model in
Traverse requires a valid session to be established before any of the other
services can be used.

Department User Container ~ These web services allow read-only access to the different data within
Device Test DGE (includes Traverse for use in your applications. For a complete listing, see the javadoc
location) Event Subnet (http://www.zyrion.com/support/docs/v5.5/javadoc/).

Search Types

External Data Feed This web service allows inserting tests data into Traverse.

Important: You should also view the WSDL for the most current API definitions.

Traverse Web Services APl Workflow

The following describes a typical Traverse Web Services API workflow:

1. Client application uses the Session Manager service to log in to Traverse by providing a
username and a password.

2. Traverse sends back a response, including a session identifier (ID). This session identifier can
also be shared with the web application.

3. The client application uses the session ID to make calls to Traverse through the different web
services. The client application uses the session ID with every call.

4. The client application ends its interaction with Traverse by logging out using the Session
Manager service.

Web Services Operations

Depending on login credentials, Traverse exposes a certain set of objects. Each web service
operation has the same basic structure:

= They have a single request parameter and they return a response parameter.

= The request objects all have a mandatory session ID along with the rest of the arguments.

» The response objects all have an integer statusCode and statusMessage field. The
statusCode should always be checked when receiving a response. A value of 0 indicates
success, and any other value is either a warning or error with the description in the
statusMessage field.

User Types
The Session Manager service defines three types of users:

= End user - An end user has restricted access to the system. For example, the member of a
department.
= Admin user - An admin user has limited administrative access to the system.

80


http://www.zyrion.com/support/docs/v5.5/javadoc/

Web Services API

= Superuser - A superuser has full access to the system.

Obijects in Traverse
The following types of objects are available in Traverse:
= Departments
= Containers
= Network Devices
= Test Configs

Each object is uniquely identified by a serial number, which is a positive 64-bit integer value. While
object names can change, the serial number should be used as a key to uniquely identify objects.

Object Severity & Status
The status of the different objects is represented by an integer value:

Status Integer Value  Description

UNCONFIGURED 0x00000008 Device is provisioned, but no tests have been created.
SUSPENDED 0x00000080 Test is not being run.

OK 0x00000800 Object is in OK state.

TRANSIENT 0x00004000 Object is flapping between OK and non-OK state.
UNKNOWN 0x00000800

UNREACHABLE 0x00080000

WARNING 0x00800000 Object is in Warning (yellow) state.

CRITICAL 0x08000000 Object is in Critical (red) state.

FAIL 0x40000000

Time Expressions

There are two ways to specify the time using Traverse Web Services.

= The first way is to enter a positive 64 bit integer representing the number of milliseconds since
1/1/1970, or Epoch time times 1000. This is typically used in the startTime and endTime
parameters of applicable requests.

= The second way is to use a relative date. The time expressions contain 3 pieces of information
separated by a dash (-). This is typically used in the startTimeExp and endTimeExp
parameters of applicable requests.

The format is:
number-unit-direction
where:
* number = any positive integer
* unit = minutes, hours, days, weeks, months, years
" direction = ago Or fromnow
For example, to run a report for the last 24 hours:
startTimeExp = 24-hours-ago endTimeExp = now

81



Web Services API

Object Filter

As its name implies the object filter is used as a part of the request parameter to filter the results. The
object filter is based on the search workflow found throughout the application. A very large number of
fields can be used to search tests, network devices and hierarchy containers as listed in the table
below. For a complete listing, see the javadoc (http://www.zyrion.com/support/docs/v5.5/javadoc/).

Name Type Description

departmentName String The name of a department

departmentSerialNumber List<Long> A list of department serial numbers.

deviceName String Name of a network device

deviceAddress String The IP address of a network device

deviceTypes List<Integer> A list of device types. Device types can be one of the

following:0. NT/Windows1. Unix/Linux2. Switch3.
Router4. Firewall5. SLB6. Proxy7. VPNCS8. Printer9.
Wireless10. Unknownll. Storagel2. VMWare

deviceSerialNumbers List<Long> A list of network device serial numbers

testTypes List<String> Type of monitor running the test. One of:ping snmp wmi
port radius ntp dns sql sql_value Idap external deepweb
jmx flow oracle pgsql cmr vmware

testSubTypes List<String>

Each testType has a series of sub-types. Most common ones are:
= rtt - Ping round trip time
» pl - Ping packet loss
= cpu- WMI or SNMP CPU load
= phymemory - Physical memory usage

bandwidth - Link utilization (%) For a complete listing, see the javadoc
(http://www.zyrion.com/support/docs/v5.5/javadoc/).

testSerialNumbers List<Long> A list of test serial numbers

testStatuses List<Integer> A list of severities in which a test currently is.
deviceStatuses List<Integer> A list of severties in which a device currently is.
containerName String The name of a container that a device or test is a part of
elementName String The name of an element that the test is a part of or contained

inside a device.

A list of serial numbers of elements that tests are part of or

elementSerialNumbers . L '
contained inside a device.

List<Long>

The category of an element that tests are a part of or

elementCategory String contained inside a device.

Whether or not exported devices and their tests should be

excludeExportedDevices  Boolean excluded from the search filter.

[ObjectFilter] Class

Traverse WSDL Files

The different Web Service WSDL files are available at the following locations (replace localhost with

82


http://www.zyrion.com/support/docs/v5.5/javadoc/
http://www.zyrion.com/support/docs/v5.5/javadoc/

the hostname running the Traverse BVE):

Service

Container
service:

Department
service:

Device
service:

DGE
service:

Event
service:

External
data feed:

Search
service:

Session
manager
(new
location):

Subnet
service:

Test
service:

Types
service:

User
service:

Location

http://localhost/api/public/container?wsdl

http://localhost/api/public/department?wsd|

http://localhost/api/public/device?wsdI

http://localhost/api/public/dge?wsdl

http://localhost/api/public/event?wsdl

http://localhost/api/public/edf?wsdl

http://localhost/api/public/search?wsdl

http://localhost/api/public/sessionManager?
wsdl

http://localhost/api/public/subnet?wsdl

http://localhost/api/public/test?wsdl

http://localhost/api/public/types?wsdl

http://localhost/api/public/user?wsdl

Sample Code

Sample code can be found online in the Traverse community (http://community.zyrion.com/) web site.

Web Services API

http://localhost/api/public/container?
wsdl=ContainerService.wsdl

http://localhost/api/public/department
?wsdl=DepartmentService.wsdl

http://localhost/api/public/device?wsd
I=DeviceService.wsd|

http://localhost/api/public/dge?wsdI=
DgeService.wsdl

http://localhost/api/public/event?wsdl
=EventService.wsdl

http://localhost/api/public/edf?wsdI=E
xternalDataFeedService.wsdl

http://localhost/api/public/search?ws
di=SearchService.wsdl

http://localhost/api/public/sessionMa
nager?wsdl=SessionManagerServic
e.wsd|

http://localhost/api/public/subnet?ws
di=SubnetService.wsd|

http://localhost/api/public/test?wsdl=
TestService.wsdl

http://localhost/api/public/types?wsdl
=TypesService.wsdl

http://localhost/api/public/user?wsdl=
UserService.wsdl

Some examples for using the Web Service calls are described below.

83


http://community.zyrion.com/

Web Services API

Session Establishment

// Services
SessionManagerService loginService;

TypesService typesService;
DeviceService deviceService;
ContainerService containerService;
TestService testService;
UserService userService;

//Login

LoginRequest request = new LoginRequest () ;
request.setUsername ( "zyrion" );
request.setPassword ( "zyrion" );

request.setLoginType ( LoginType.USERNAME ) ;
request.setSessionType ( SessionType.Traverse );
request.setRemoteAddress ( "127.0.0.1" );

LoginResponse response = sessionManagerService.login( request );
String sessionld = response.getSessionID() ;

A Visual Basic code snippet for logging in and then logging out:...

Dim loginRequest As New tvSessionMgr.LoginRequest

Dim loginResponse As New tvSessionMgr.LoginResponse
loginRequest.loginType = tvSessionMgr.LoginType.USERNAME
loginRequest.sessionType = tvSessionMgr.SessionType.Traverse
loginRequest.username = "my user"

loginRequest.password = "my password"
loginRequest.remoteAddress = "192.168.1.100"

loginResponse = sessionManagerObject.login (loginRequest)

Dim logoutRequest As New nvSessionMgr.LogoutRequest
logoutRequest.sessionID = loginResponse.sessionID
sessionManagerObject.logout (LogoutRequest)

Types

// Get all available device types
ListDeviceTypesRequest listDeviceTypesRequest = new
ListDeviceTypesRequest () ;
listDeviceTypesRequest.setSessionId( sessionId );
ListDeviceTypesResponse listDeviceTypesResponse =
typesService.listDeviceTypes (
listDeviceTypesRequest ) ;

// Get all available test sub-types

ListTestTypesRequest listTypesRequest = new ListTestTypesRequest () ;
listTypesRequest.setSessionId( sessionId );

ListTestTypesResponse listTypesResponse = typesService.listTestTypes (
listTypesRequest ) ;

// Get all available severities

ListSeveritiesRequest listSeveritiesReq = new ListSeveritiesRequest /() ;
listSeveritiesReq.setSessionId( sessionId );

ListSeveritiesResponse listSeveritiesResp =
typesService.listSeverities (listSeveritiesReq) ;

84



Web Services API

Containers, Devices & Tests

// Get the status for all containers

GetStatusRequest containerStatusReqg = new GetStatusRequest () ;
containerStatusReqg.setSessionId( sessionId );

ObjectFilter containerFilter = new ObjectFilter();
containerStatusReqg.setObjectFilter ( containerFilter );
containerFilter.setContainerName( "*" );
GetContainerStatusResponse containerStatusResp =
containerService.getContainerStatus ( containerStatusReq );

// Get the device status for all devices with 'zyrion' in the name
GetStatusRequest deviceStatusReqg = new GetStatusRequest () ;
deviceStatusReq.setSessionId( sessionId );

// Select only the devices with 'zyrion' in the name

ObjectFilter deviceFilter = new ObjectFilter():;
deviceFilter.setDeviceName ( "*zyrion*" );
deviceStatusReqg.setObjectFilter ( deviceFilter );

GetDeviceStatusResponse deviceStatusResp = deviceService.getDeviceStatus (
deviceStatusReq ) ;

// Get 6 hours of historical data for the ping round trip time on web servers
GetHistoricalDataRequest histDataRequest = new GetHistoricalDataRequest () ;
histDataRequest.setSessionId( sessionId );

// Build the filter

List<String> topNSubTypes = new LinkedList<String> () ;
topNSubTypes.add( "rtt" );

ObjectFilter testFilter = new ObjectFilter();
testFilter.setDeviceName ( "www*" ) ;
testFilter.setTestSubTypes ( topNSubTypes ) ;
histDataRequest.setTestFilter ( testFilter );
histDataRequest.setStartTime ( "6-hours-ago" );

histDataRequest.setEndTime ( "now" )
GetHistoricalDataResponse histResp = testService.getHistoricalData (
histDataRequest );

85



Web Services API

Events Service

// Get the hourly event distribution for the last 7 days for the

// physical memory usage test on the demo server.

// Only return warning and critical events.

GetEventDistributionRequest getDistReq = new GetEventDistributionRequest () ;
getDistReq.setSessionId( sessionId );

getDistReq.setStartTimeExp ( "7-days-ago" );

getDistReq.setEndTimeExp ( "now" );

getDistReq.setGroupingPeriod( GroupingPeriod.HOURS 1 );
getDistReqg.setSeverities ( new Integer[] { Severity.CRITICAL, Severity.WARNING
P

getDistReq.setGraphClass ( ObjectClass.TEST );

getDistReqg.setFilterClass ( ObjectClass.TEST );

ObjectFilter criteria = new ObjectFilter();

criteria.setTestName ( "Physical Memory Usage" );

criteria.setDeviceName ( "demo.zyrion.com" ) ;

getDistReq.setObjectFilter ( criteria );

GetEventDistributionResponse getDistResp =
eventService.getEventDistribution( getDistReq ) ;

86



Chapter 9

Traverse CLI (Command Line
Interface)

In This Chapter

L0 10T YT S 88
(T =T0 (U] (= PSR PRR 88
GENETAI SYNMIAX ...t iteiee ettt et e e e e e s sa b et e e e sabe e e e e aabe e e e e aabe e e e e anbaeee e e 88
CoNfIGUIALION FlE ..ottt e e 89
SESSION MANAGEIMENT......eeiiiiiiiie ettt e et e e e e e st e e e s st e e e e sbaeea e e 89
RUNNING A QUETY ..ttt e e e e e et e e e e e e s e ab b b e et e e e e e e e e aabnbeneeaaaeas 90
SEAICKN FHILET ...t e e e e e e 93
BaAtCh PrOCESSING. .. uuiiiii ittt s e e e e e s e e e e e e e s e et e e e e e e e s e annraaaeaaees 94

87



Traverse CLI (Command Line Interface)

Overview

The BVE API Command-Line Interface (bveCLI) utility is bundled with Traverse 7.0 and provides a
convenient method for retrieving information from Traverse databases without requiring programming
knowledge. The tool can be used to review the configuration of a device, test, container, etc. or
create/update various objects or retrieve results/events from one or more DGEs. bveCLlI provides
numerous advantages over using a Telnet client to connect to the BVE API server, including automatic
login, command history recall, inline editing of API command, filter using regular expression, choice of
output format, and many others.

Prerequisites

bveCLI uses a BVE API component that is typically installed on the primary/central Traverse server.
Before the tool can be used, the API server must be started.

Linux/Solaris
Execute the following commands, substituting the proper path for the Traverse installation location.

su
cd /usr/local/traverse
etc/bveapi.init start

Windows

Launch Start > Traverse > Traverse Service Controller and enable the BVE API Server or open a
command window and execute the following command.

net start nvbveapi

General Syntax

bveCLl is installed in the TRAVERSE HOME/utils directory. The tool can be launched using the
following parameters:

bveCLI.pl [ <server> ] [ <credentials> ] [ <query> ]
where <server> is specified as

—--host n.n.n.n --port nnn

and credentials are provided as

—-—username USERNAMEl --password PASSWORD1

In absence of any server information, bveCLI starts a basic command shell and accepts a limited set of
commands.

Sample Session

% bveCLI.pl --host 192.168.10.21 --user admin --password secretl
connected to '192.168.10.21:7661"

logged into api server as 'admin'

traverse[192.168.10.21:76611#

Additional query parameters provide advanced functionality and are described in detail in relevant
sections below.

88



Traverse CLI (Command Line Interface)

Parameter Short Description
Load this configuration file instead of looking for .bveapirc under user's home

--config ¢ directory

--exec -X Execute the specified query in batch mode; requires --host parameter

--input -i Execute the queries from specified file in batch mode; requires --host parameter

--output -0 Save the result from query into specified file; if already exists, it will be overwritten

--format -t Result from query should be printed in specified format

—fields r Include only the specified fields in the output; valid only with --exec or --input
parameters

--debug -d Provide diagnostic details; use multiple times to increase logging detail

Configuration File

bveCLlI can load the login credentials for a target BVE API server from a configuration (preferences) file
located under the user's home directory. On Linux/Solaris this can be accessed as

SHOME / .bveapirc while on Windows it is accessible as $HOME%\ .bveapirc. bveCLI can load a
configuration file located at an alternate location using the —-—config parameter. The configuration file
has the following general format:

[n.n.n.n]

_default=userl

userl=passwordl

where n.n.n.n is the fully-qualified domain name or IP address of the BVE server. The configuration
file can support multiple sections, each represented with its own BVE server address. The default user
ID for a server is specified using the default property. If specified, upon connecting to the server,
bveCLI attempts to log in as the specified user. The password for this or other users are specified
within the same section as name-value pairs. You may specify multiple credential pairs and the correct
password will be looked up when logging into the API server using the corresponding user.

Example: $HOME/.bveapirc

[myServerl]
_default=admin
admin=secretl
demol=letmein

[yourServer?2]

visitor=publicl

When bveCLlI is launched as bveCLI.pl --host myServerl, the tool attempts to log into the server
as user admin using password secretl automatically. Alternatively, bveCLI.pl --host
myServerl --user demol results in automatic login using the password letmein. Finally, when
launched as bveCLI.pl --host yourServer?2, the tool establishes a connection to the server but
does not attempt to automatically log into it.

Session Management

When launched in interactive mode, bveCLI supports the following commands.

89



Traverse CLI (Command Line Interface)

connect <n.n.n.n> [ <port> ]

Establishes a TCP connection to specified BVE API server. If the port number is not specified, 7661 is
used by default. This step can be skipped by specifying the --host and --port command-line
parameters. If a matching entry is found in the configuration file, automatic login will be attempted.
Once a connection has been established, the prompt reflects the host name/address and port.

login <username> [ <password> ]

Logs into the BVE API server using the specified credentials. If the password is omitted, bveCLI
attempts to lookup a matching entry from the configuration file. Until a valid credential has been
supplied, the prompt displays the user as unauth.

exit
Logs out of the API server and close TCP connection.

Sample Session

% bveCLI.pl

traverse> connect 192.168.10.21
connected to '192.168.10.21:7661"
traverse (noauth)> login admin secretl
logged into api server as 'admin'
traverse[192.168.10.21:7661]1# quit

% bveCLI.pl --host 192.168.10.21 --user admin --password secretl
connected to '192.168.10.21:7661"'

logged into api server as 'admin'

traverse[192.168.10.21:7661]1# quit

Running A Query

bveCLI supports all standard BVE APl commands with corresponding parameters, as outlined in the
BVE FlexAPI Protocol Reference (page 3). A command issued on bveCLlI is transparently executed on the
remote server and the response from the server is parsed/analyzed. For configuration commands that
only return a success/failure response, no output is presented unless the command was not
successful. A command that returns configuration/performance data (eg. device.list, location.list) is
presented in a readable format.

90



Traverse CLI (Command Line Interface)

Sample Session

traverse[192.168.10.21:7661]# device.list "devicename=Cisco*"

B e e e +
| Parameter | Value
o o +
| accountname | Zyrion, Inc.

| accountserialnumber | 49

| address | 192.168.10.250

| agentbatchmode | 1

| agentcommunity | secretl

| agentport | 161 |
| agentversion | 2 [
| clearonok | false

| comment | WAN Router/Default Gateway |
| configbackupenabled | true

| configbackupfrequency | 360

| devicename | Cisco Router

| devicetype | IP Router

| dgename | localhost

| flappreventionwaitcycles | O

| isimported | false |
| isreadonly | false

| issuspended | false

| locationname | Corporate Office

| model | 3620 |
| parentnames | |
| rediscoveryenabled | false

| serialnumber | 220070

| showonsummary | true

| smartnotify | true

| tagl (tag 1) | IT |
| tag2 (tag 2) | |
| tag3 (tag 3) | |
| tagd (tag 4) | |
| tag5 (tag 5) | |
| v3authproto | 1 |
| v3privproto | 1 |
| vendor | Cisco Systems
o o +
| accountname | Zyrion, Inc.

| accountserialnumber | 49

| address | 192.168.14.1

| clearonok | false

| comment | |
| configbackupenabled | false

| devicename | Cisco UCS Platform

| devicetype | Other/Generic Device

| dgename | localhost

| flappreventionwaitcycles | -1

| isimported | false |
| isreadonly | false

| issuspended | false

| locationname | Corporate Office

| model |

91



Traverse CLI (Command Line Interface)

| parentnames | Primary Distribution Switch |

| rediscoveryenabled | false

| serialnumber | 2400080

| showonsummary | true

| smartnotify | true

| tagl (tag 1) | |

| tag2 (tag 2) | |

| tag3 (tag 3) | |

| tagd (tag 4) | |

| tag5 (tag 5) | |

| vendor | |
+

traverse[192.168.10.21:7661]# test.list "devicename=Cisco Router",
"testname=Proc*Memory*"

| Number of Items: 1 |

B bt e +
| Parameter | Value

B ittt o +
| accountname | Zyrion, Inc.

| actionname | None |
| agentbatchmode | 1

| agentcommunity | secretl

| agentport | 161 |
| agentversion | 2 |
| criticalthreshold | 95

| devicename | Cisco Router

| flappreventionwaitcycles | -1

| interval | 600 |
| issuspended | false

| maxvalue | 47536288

| resultmultiplier | 1.0

| resultprocessdirective | 1

| schedulename | Default Schedule

| serialnumber | 250005

| shadowcriticalthreshold | 95

| shadowwarningthreshold | 85

| slathreshold | 76

| snmpoid | .1.3.6.1.4.1.9.9.48.1.1.1.5.1 |
| subtype | cisco memfree

| suppressed | false

| testname | Processor Memory Util

| testtype | snmp |
| thresholdtype | 1 |
| timebasedthresholds | false

| units | % |
| v3authproto | 1 |
| v3privproto | 1 |
| warningthreshold | 85

v e e e + _______________________________ A

traverse[192.168.10.21:7661]# device.create "devicename=TEST1",
"location=Corporate Office", "devicetype=windows"

ERROR: Missing required fields '"address=<value>"', and
'"locationName=<value>""'.

92



Traverse CLI (Command Line Interface)

traverse[192.168.10.21:7661]# device.create "devicename=TEST1",
"address=127.0.0.1", "locationname=Corporate Office", "devicetype=windows"

traverse[192.168.10.21:7661]1# device.list "devicename=TEST1"

-]

e e +

| Parameter | Value

f——_— = 4+ +

| accountname | Zyrion, Inc |

| accountserialnumber | 49

| address | 127.0.0.1 |

| clearonok | false

[..

traverse[192.168.10.21:7661]# device.delete "devicename=TEST1"

traverse[192.168.10.21:7661]1#

Search Filter

Beyond the search criteria supported by different BVE APl commands, bveCLI provides additional
filtering capabilities. Commands executed on bveCLI can be piped through a grep filter. The filter
supports Perl5 compliant regular expressions and is applied against the raw output from the remote
server in case insensitive manner before parsed by bveCLI.

Sample Session
traverse[192.168.10.21:7661]# device.status "status=warning"

tmm o +
| Parameter | Value

- et ittt +
| devicename | Exchange Server 2007 |
| serialnumber | 1100004

| status | Warning |
o —— o +
| devicename | Shipping Floor Printer |
| serialnumber | 280247

| status | Warning |
tmm o +
| devicename | Database Server |
| serialnumber | 540012

| status | Warning |
Vo o e e e + ________________________ ]

93



Traverse CLI (Command Line Interface)

traverse[192.168.10.21:7661]# device.status "status=warning" | grep server

o — o +
| Parameter | Value

o —— o +
| devicename | Exchange Server 2007 |
| serialnumber | 1100004

| status | Warning |
o ———— o +
| devicename | Database Server |
| serialnumber | 540012

| status | Warning |
Ve e e + ______________________ A

Batch Processing

bveCLI can also be used in an non-interactive manner for performing quick queries against the BVE
API server. When executed with the —--exec parameter, bveCLI executes the specified query and logs
out immediately. In this case, the --host parameter must be specified along with suitable login
credentials provided in a command line or configuration file. The search filter can be specified in batch
mode, similar to the interactive mode (page 90).

Sample Session

% bveCLI.pl --host 192.168.10.21 --user admin --exec 'container.status
"servicename=S*"'

B ettt et T e - +
| Parameter | Value

o o — +
| parentserialnumber | 1770035 |
| serialnumber | 1770023 |
| servicename | Sunnyvale |
| status | Ok |
o o — +
| parentserialnumber | 1770035 |
| serialnumber | 1770029 |
| servicename | San Francisco |
| status | Critical |
o o — +
| parentserialnumber | 1770035 |
| serialnumber | 2890000 |
| servicename | San Antonio |
| status | Ok |
Ve e e e e e e + _______________ ]

94



Traverse CLI (Command Line Interface)

% bveCLI.pl --host 192.168.10.21 --exec 'container.status "servicename=S*" |
grep critical'

e ———————— +
| Parameter | Value

e e —— +
| parentserialnumber | 1770035 |
| serialnumber | 1770029 |
| servicename | San Francisco |
| status | Critical |
Ve + _______________ ]

In order to execute multiple commands, use —--input parameter instead. This parameter requires the
location of a text file containing one or more valid APl commands on each line.

Sample Session

[}

% cat /tmp/commands.txt
container.status "servicename=S*"
device.status "status=warning"

95



Traverse CLI (Command Line Interface)

% bveCLI.pl --host 192.168.10.21 --user admin --input /tmp/commands.txt

o o ——— +
| Parameter

+ ____________________
| parentserialnumber
| serialnumber
| servicename
| status

1770035 |
1770023 |
Sunnyvale |
Ok |

|
+
|
|
|
|
+
parentserialnumber | 1770035
serialnumber | 1770029
|
|
+
|
|
|
|
+

| |
| |
| servicename San Francisco |
| status Critical |

| parentserialnumber 1770035
| serialnumber
| servicename
|

status

|
2890000 |
San Antonio |
Ok |

| Parameter

+ ______________
| devicename
| serialnumber
| status
+ ______________
| devicename Shipping Floor Printer |

|
+
| Exchange Server 2007 |
|
|
+
|
| serialnumber | 280247
|
+
|
|
|
+

1100004 |
Warning |

| status Warning |
+ ______________
| devicename
| serialnumber
| status

Database Server |
540012 |
Warning |

Field Selection

In batch mode, bveCLI allows selection of specific configuration/output fields using the --fields
parameter. When used, the output only includes the specified fields.

96



Traverse CLI (Command Line Interface)

Sample Session

[}

% bveCLI.pl --host 192.168.10.21 --exec 'device.list "devicename=Cisco*"'

—-—-fields

devicename, address, configbackupenabled, devicetype,invalidfield, serialnumbe

r

| Number of Items: 3 |

et T ettt e +

| Parameter | Value

o ——_—_—————— +

| address | 67.21.1.74

| configbackupenabled | true

| devicename | Cisco Router

| devicetype | IP Router

| serialnumber | 220070

m———————— e +

| address | 192.168.14.1

| configbackupenabled | false

| devicename | Cisco UCS Platform

| devicetype | Other/Generic Device

| serialnumber | 2400080

m———————— e +

| address | 192.168.14.2

| configbackupenabled | false

| devicename | Cisco Unified Communications |

| devicetype | Linux/Other Unix

| serialnumber | 2400399

L + ______________________________ ]
Output Format

By default bveCLI uses a tabular output format that is suitable for operational use. The tool supports
additional output formats—XML, JSON, CSV—that can be used for integration with in-house and
third-party tools. The output format can be selected using the —--format parameter.

Sample Session

% bveCLI.pl --host 192.168.10.21 --exec 'device.list "devicename=Cisco*"'
--fields

devicename, address, configbackupenabled, devicetype,invalidfield, serialnumbe
r ——-format json

97



Traverse CLI (Command Line Interface)

"api-response" : {
"data" : {
"object" : [
{
"address" : "67.21.1.74",
"configbackupenabled" : "true",
"devicename" : "Cisco Router",
"devicetype" : "IP Router",
"serialnumber" : "220070"
b
{
"address" : "192.168.14.1",
"configbackupenabled" : "false",
"devicename" : "Cisco UCS Platform",
"devicetype" : "Other/Generic Device",
"serialnumber" : "2400080"
by
{
"address" : "192.168.14.2",
"configbackupenabled" : "false",
"devicename" : "Cisco Unified Communications",
"devicetype" : "Linux/Other Unix",
"serialnumber" : "2400399"
}
]
by
"status" : {
"code" . "203",
"error" : "false",
"message" : "request accepted, records returned: 3"

}

% bveCLI.pl --host 192.168.10.21 --exec 'device.list "devicename=Cisco*"'

°

—--fields
devicename, address, configbackupenabled, devicetype,invalidfield, serialnumbe

r ——-format xml

98



Traverse CLI (Command Line Interface)

<?xml version='1l.0' standalone='yes'?>
<api-response>
<data>
<object>
<serialnumber>220070</serialnumber>
<address>67.21.1.74</address>
<configbackupenabled>true</configbackupenabled>
<devicename>Cisco Router</devicename>
<devicetype>IP Router</devicetype>
</object>
<object>
<serialnumber>2400080</serialnumber>
<address>192.168.14.1</address>
<configbackupenabled>false</configbackupenabled>
<devicename>Cisco UCS Platform</devicename>
<devicetype>Other/Generic Device</devicetype>
</object>
<object>
<serialnumber>2400399</serialnumber>
<address>192.168.14.2</address>
<configbackupenabled>false</configbackupenabled>
<devicename>Cisco Unified Communications</devicename>
<devicetype>Linux/Other Unix</devicetype>
</object>
</data>
<status>
<code>203</code>
<error>false</error>
<message>request accepted, records returned: 3</message>
</status>
</api-response>

% bveCLI.pl --host 192.168.10.21 --exec 'device.list "devicename=Cisco*"'

--fields
devicename, address, configbackupenabled, devicetype,invalidfield, serialnumbe
r ——-format csv

# serialnumber, address, configbackupenabled, devicename, devicetype
"220070", "67.21.1.74", "true", "Cisco Router", "IP Router"
"2400080", "192.168.14.1", "false", "Cisco UCS Platform", "Other/Generic

Device"
"2400399", "192.168.14.2", "false", "Cisco Unified Communications",

"Linux/Other Unix"

For JSON/XML formats, the objects are returned as an array with separate elements indicating their
success/failure status. For CSV format, the first row is prefixed with # symbol and indicates the
contents of each column.

Future Enhancements

= Interactive password input should mask user entry

= Pagination support using "| more"

= Interactive field selection using "| cut”

= Tab completion works for top level command but not parameters

99






Index

[

[GetErrorMsg] « 44, 46
[InsertMessage] « 47
[InsertResult] * 45

A

action.create « 6

action.delete « 7

action.list+ 7

action.update « 7

action.x * 6

Adding A New Test Type * 54
adminClass.create * 7
adminClass.delete * 8
adminClass.list * 8
adminClass.update * 8
adminClass.x * 7

adminGroup.x * 8

Architectural Description * 65
Authentication Plugin Java Class * 64
Authentication Plugin Script « 65

B

Batch Processing « 94
BVE FlexAPI Protocol Reference « 3

C

Client Commands ¢ 6, 37

Command/Reply Formatting and Commands * 36

Command/Reply Formatting Rules + 4

Configuration File « 89

Configuration File Format « 56, 59

Configuration on UNIX « 76

Configuration on Windows « 76

Configuring the Plugin Package ¢ 58

Connecting to the Server « 4

Connecting To The Server * 36

container.create « 8

container.delete * 10

container.list « 10

container.members * 11

container.status « 12

container.update * 12

container.x * 8

Containers, Devices & Tests * 85

CreateX, ListX, UpdateX, DeleteX, SuspendX,
ResumeX, ExportX, MoveX « 48

Creating a Custom SNMP Test « 52

Creating a New Device and Test * 29

Creating A New Plugin Java Monitor * 56

Creating A New Plugin Script Monitor * 59

Index

Creating a New Test Container and Placing It in a New
Device Container * 30

Creating an Advanced Port Test * 30

Creating New Plugin Actions * 70

D

department.create * 14
department.delete « 14
department.list « 14
department.resume * 15
department.suspend * 15
department.update * 15
department.x « 14
device.create * 15
device.delete » 16
device.export « 16

device.list « 17

device.move * 17
device.resume * 17
device.status « 17
device.suspend « 17
device.update « 18

device.x * 15
deviceDependency.create * 19
deviceDependency.delete « 19
deviceDependency.list « 19
deviceDependency.x * 19
Devices.List « 33

dge.create « 20

dge.delete * 20

dge.list « 20

dge.update « 20

dge.x 19

dgeX.create « 20

dgeX.delete * 21

dgeX.list « 21

dgeX.update « 21

dgeX.x * 20

Disconnecting from the Server « 4
Disconnecting From the Server « 36

E

EDF versus Plugin Monitors « 39
event.list » 21

Events Service * 86

Examples « 40, 73

Extending the Action Framework « 74
Extending the Message Handler « 62
External Authentication « 63

External Data Feed (EDF) Reference « 35

F

Field Selection * 96

Finding Tests Without Actions Assigned * 51
Further Examples ¢ 29, 51

Future Enhancements * 99

G

General Syntax * 88
GetContainerMembers ¢ 48

101



Index

GetErrorMsg « 51
GetResultCount « 48
GetResultRef « 49
GetResultSet « 49
GetXStatus * 49

Installation « 75

L

location.create * 21
location.delete * 21
location.list « 22
location.update « 22
location.x ¢ 21

Login « 32, 44, 46, 49
Logout « 33, 45, 46, 50

N
new * 44, 46, 47
O

Object Filter » 82
Output Format « 97
Overview « 4, 36, 44, 54, 64, 70, 80, 88

P

Plugin Actions « 69

Plugin Monitors « 53

Preface « 1

Prerequisites « 75, 88
Provisioning Plugin Tests « 58

R

REST API Overview ¢« 32

REST Command Format * 32
REST Commands in Traverse ¢ 32
result.list « 22

Running A Query * 90

S
Sample Code « 83

Sample Plugin Monitor with Discrete Thresholds ¢ 61

Search Filter » 93

Session Establishment « 84
Session Management « 89
sla.create * 22

sla.delete « 23

sla.list « 23

sla.status « 23

sla.update « 23

sla.x * 22

T

Templates for EDF Tests + 39
test.create * 23

test.delete 25

test.list » 26

102

test.resume ¢ 26

test.suppress * 26

test.suspend « 26

test.update « 27

test.x « 23

Time Expressions « 81

Traverse CLI (Command Line Interface) « 87
Traverse Perl AP| « 43

Traverse REST API « 31

Traverse Web Services APl Workflow « 80
Traverse WSDL Files ¢ 82
Troubleshooting « 77

Types « 84

U

user.create « 27
user.delete * 28
user.list » 28
user.represent « 28
user.update « 28
user.x * 27
userClass.create * 28
userClass.delete * 28
userClass.list * 28
userClass.update « 29
userClass.x * 28

w

Web Services AP| « 79

Web URL Authentication « 67
WhoAml « 33

Writing The Plugin Class « 58
Writing The Plugin Script « 60

Z
Zyrion
ExternalData - EDF API 44

Message - ISM API « 46
Provisioning - BVE API « 47



	Preface
	BVE FlexAPI Protocol Reference
	Overview
	Connecting to the Server
	Disconnecting from the Server
	Command/Reply Formatting Rules
	Client Commands
	action.x
	action.create
	action.delete
	action.list
	action.update

	adminClass.x
	adminClass.create
	adminClass.delete
	adminClass.list
	adminClass.update

	adminGroup.x
	container.x
	container.create
	container.delete
	container.list
	container.members
	container.status
	container.update

	department.x
	department.create
	department.delete
	department.list
	department.resume
	department.suspend
	department.update

	device.x
	device.create
	device.delete
	device.export
	device.list
	device.move
	device.resume
	device.status
	device.suspend
	device.update

	deviceDependency.x
	deviceDependency.create
	deviceDependency.delete
	deviceDependency.list

	dge.x
	dge.create
	dge.delete
	dge.list
	dge.update

	dgeX.x
	dgeX.create
	dgeX.delete
	dgeX.update
	dgeX.list
	event.list

	location.x
	location.create
	location.delete
	location.list
	location.update
	result.list

	sla.x
	sla.create
	sla.update
	sla.delete
	sla.list
	sla.status

	test.x
	test.create
	test.delete
	test.list
	test.resume
	test.suppress
	test.suspend
	test.update

	user.x
	user.create
	user.delete
	user.list
	user.represent
	user.update

	userClass.x
	userClass.create
	userClass.delete
	userClass.list
	userClass.update

	Further Examples
	Creating a New Device and Test
	Creating an Advanced Port Test
	Creating a New Test Container and Placing It in a New Device Container



	Traverse REST API
	REST API Overview
	REST Command Format
	REST Commands in Traverse
	Login
	WhoAmI
	Logout
	Devices.List


	External Data Feed (EDF) Reference
	Overview
	Connecting To The Server
	Disconnecting From the Server
	Command/Reply Formatting and Commands
	Client Commands
	Templates for EDF Tests
	EDF versus Plugin Monitors
	Examples

	Traverse Perl API
	Overview
	Zyrion::ExternalData - EDF API
	new
	[GetErrorMsg]
	Login
	Logout
	[InsertResult]

	Zyrion::Message - ISM API
	new
	[GetErrorMsg]
	Login
	Logout
	[InsertMessage]

	Zyrion::Provisioning - BVE API
	new
	CreateX, ListX, UpdateX, DeleteX, SuspendX, ResumeX, ExportX, MoveX
	GetContainerMembers
	GetResultCount
	GetResultRef
	GetResultSet
	GetXStatus
	Login
	Logout

	GetErrorMsg
	Further Examples
	Finding Tests Without Actions Assigned
	Creating a Custom SNMP Test


	Plugin Monitors
	Overview
	Adding A New Test Type
	Creating A New Plugin Java Monitor
	Configuration File Format
	Writing The Plugin Class
	Configuring the Plugin Package
	Provisioning Plugin Tests

	Creating A New Plugin Script Monitor
	Configuration File Format
	Writing The Plugin Script
	Sample Plugin Monitor with Discrete Thresholds

	Extending the Message Handler

	External Authentication
	Overview
	Authentication Plugin Java Class
	Architectural Description
	Authentication Plugin Script
	Web URL Authentication

	Plugin Actions
	Overview
	Creating New Plugin Actions
	Examples
	Extending the Action Framework
	Prerequisites
	Installation
	Configuration on Windows
	Configuration on UNIX
	Troubleshooting


	Web Services API
	Overview
	Traverse Web Services API Workflow
	Time Expressions
	Object Filter
	Traverse WSDL Files
	Sample Code
	Session Establishment
	Types
	Containers, Devices & Tests
	Events Service


	Traverse CLI (Command Line Interface)
	Overview
	Prerequisites
	General Syntax
	Configuration File
	Session Management
	Running A Query
	Search Filter
	Batch Processing
	Field Selection
	Output Format
	Future Enhancements


	Index

